You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
6.6 KiB
174 lines
6.6 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/fc_op.h"
|
|
#include <vector>
|
|
#include "paddle/fluid/operators/math/blas.h"
|
|
#include "paddle/fluid/operators/math/fc_compute.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
void FCOp::InferShape(framework::InferShapeContext* ctx) const {
|
|
PADDLE_ENFORCE(ctx->HasInput("Input"),
|
|
"X(Input) of Fully Connected should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Out(Output) of Fully Connected should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("W"),
|
|
"W(Input) of Fully Connected should not be null.");
|
|
|
|
auto in_dims = ctx->GetInputDim("Input");
|
|
auto w_dims = ctx->GetInputDim("W");
|
|
|
|
if (ctx->HasInput("Bias")) {
|
|
auto bias_dims = ctx->GetInputDim("Bias");
|
|
if (bias_dims.size() == 2) {
|
|
PADDLE_ENFORCE_EQ(bias_dims[0], 1, "The shape of Bias must be [1, dim].");
|
|
PADDLE_ENFORCE_EQ(bias_dims[1], w_dims[1],
|
|
"The shape of Bias must be [1, dim].");
|
|
} else if (bias_dims.size() == 1) {
|
|
PADDLE_ENFORCE_EQ(bias_dims[0], w_dims[1],
|
|
"The shape of Bias must be [1, dim].");
|
|
}
|
|
}
|
|
|
|
if (ctx->Attrs().Get<bool>("use_mkldnn")) {
|
|
PADDLE_ENFORCE(in_dims.size() == 2 || in_dims.size() == 4,
|
|
"Fully Connected input should be 2-D or 4-D tensor.");
|
|
}
|
|
PADDLE_ENFORCE_EQ(w_dims.size(), 2,
|
|
"Fully Connected input should be 2-D tensor.");
|
|
int in_num_col_dims = ctx->Attrs().Get<int>("in_num_col_dims");
|
|
PADDLE_ENFORCE_GT(
|
|
in_dims.size(), in_num_col_dims,
|
|
"The input tensor Input's rank of FCOp should be larger than "
|
|
"in_num_col_dims.");
|
|
|
|
std::vector<int64_t> output_dims;
|
|
FCOutputSize(in_dims, w_dims, output_dims, in_num_col_dims);
|
|
|
|
ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
|
|
ctx->ShareLoD("Input", "Out");
|
|
}
|
|
|
|
framework::OpKernelType FCOp::GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const {
|
|
framework::LibraryType library = framework::LibraryType::kPlain;
|
|
framework::DataLayout layout = framework::DataLayout::kAnyLayout;
|
|
if (ctx.Attr<bool>("use_mkldnn")) {
|
|
library = framework::LibraryType::kMKLDNN;
|
|
layout = framework::DataLayout::kMKLDNN;
|
|
}
|
|
return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
|
|
ctx.GetPlace(), layout, library);
|
|
}
|
|
|
|
void FCOpGrad::InferShape(framework::InferShapeContext* ctx) const {
|
|
auto in_dims = ctx->GetInputDim("Input");
|
|
auto w_dims = ctx->GetInputDim("W");
|
|
|
|
if (ctx->HasOutput(framework::GradVarName("Input"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
|
|
}
|
|
if (ctx->HasOutput(framework::GradVarName("W"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("W"), w_dims);
|
|
}
|
|
|
|
if (ctx->HasInput("Bias")) {
|
|
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")),
|
|
"Should have bias grad");
|
|
auto bias_dims = ctx->GetInputDim("Bias");
|
|
ctx->SetOutputDim(framework::GradVarName("Bias"), bias_dims);
|
|
}
|
|
}
|
|
|
|
framework::OpKernelType FCOpGrad::GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const {
|
|
framework::LibraryType library = framework::LibraryType::kPlain;
|
|
framework::DataLayout layout = framework::DataLayout::kAnyLayout;
|
|
if (ctx.Attr<bool>("use_mkldnn")) {
|
|
library = framework::LibraryType::kMKLDNN;
|
|
layout = framework::DataLayout::kMKLDNN;
|
|
}
|
|
return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
|
|
ctx.GetPlace(), layout, library);
|
|
}
|
|
|
|
void FCOpMaker::Make() {
|
|
AddInput("Input", "(Tensor), The input tensor of fully connected operator.");
|
|
AddInput("W", "(Tensor), The weight fc op with shape (I, O).");
|
|
AddInput("Bias", "(Tensor, optional) Bias vector with shape (1 x O")
|
|
.AsDispensable();
|
|
AddAttr<int>("in_num_col_dims",
|
|
"(int, default 1), The fc op can take tensors with more than "
|
|
"two dimensions as its inputs.")
|
|
.SetDefault(1)
|
|
.EqualGreaterThan(1);
|
|
AddOutput("Out", "(Tensor) The output tensor of fully connected operator. ");
|
|
AddAttr<bool>("use_mkldnn",
|
|
"(bool, default false) Only used in mkldnn kernel")
|
|
.SetDefault(false);
|
|
AddAttr<bool>(framework::kAllKernelsMustComputeRuntimeShape,
|
|
"Skip calling InferShape() function in the runtime.")
|
|
.SetDefault(true);
|
|
AddComment(R"DOC(
|
|
Fully Connected Operator.
|
|
|
|
The fully connected operation calculates the output based on the input, weights and bias.
|
|
The size of each dimension of the parameters checked in the infer-shape.
|
|
)DOC");
|
|
}
|
|
|
|
template <typename T>
|
|
class FCOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
|
|
"It must use CPUPlace.");
|
|
auto input = ctx.Input<framework::LoDTensor>("Input");
|
|
auto w = ctx.Input<Tensor>("W");
|
|
auto bias = ctx.Input<Tensor>("Bias");
|
|
auto output = ctx.Output<framework::LoDTensor>("Out");
|
|
int in_num_col_dims = ctx.Attr<int>("in_num_col_dims");
|
|
auto w_dims = w->dims();
|
|
|
|
std::vector<int64_t> output_dims;
|
|
FCOutputSize(input->dims(), w_dims, output_dims, in_num_col_dims);
|
|
output->Resize(framework::make_ddim(output_dims));
|
|
output->set_lod(input->lod());
|
|
|
|
auto out_dims = output->dims();
|
|
int M = framework::product(out_dims) / w_dims[1];
|
|
|
|
const T* input_data = input->data<T>();
|
|
const T* w_data = w->data<T>();
|
|
T* output_data = output->mutable_data<T>(ctx.GetPlace());
|
|
auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
|
|
math::FCCompute<platform::CPUDeviceContext, T>(
|
|
blas, M, w_dims[1], w_dims[0], input_data, w_data, output_data,
|
|
bias ? bias->data<T>() : NULL);
|
|
|
|
// TODO(TJ): fuse act
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(fc, ops::FCOp, ops::FCOpMaker,
|
|
paddle::framework::DefaultGradOpDescMaker<true>);
|
|
REGISTER_OPERATOR(fc_grad, ops::FCOpGrad);
|
|
REGISTER_OP_CPU_KERNEL(fc, ops::FCOpKernel<float>, ops::FCOpKernel<double>);
|