You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							331 lines
						
					
					
						
							14 KiB
						
					
					
				
			
		
		
	
	
							331 lines
						
					
					
						
							14 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve.
 | 
						|
 | 
						|
   Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
   you may not use this file except in compliance with the License.
 | 
						|
   You may obtain a copy of the License at
 | 
						|
 | 
						|
   http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
   Unless required by applicable law or agreed to in writing, software
 | 
						|
   distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
   See the License for the specific language governing permissions and
 | 
						|
   limitations under the License. */
 | 
						|
 | 
						|
#include "paddle/framework/eigen.h"
 | 
						|
#include "paddle/framework/op_registry.h"
 | 
						|
#include "paddle/memory/memory.h"
 | 
						|
#include "paddle/operators/conv_op.h"
 | 
						|
#include "paddle/platform/assert.h"
 | 
						|
#include "paddle/platform/cudnn_helper.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
using Tensor = framework::Tensor;
 | 
						|
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
 | 
						|
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
 | 
						|
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
 | 
						|
using DataLayout = platform::DataLayout;
 | 
						|
 | 
						|
static constexpr size_t kCONV_CUDNN_WORKSPACE_LIMIT_BYTES =
 | 
						|
    static_cast<size_t>(1024) * 1024 * 1024;
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class CudnnConvOpKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& ctx) const override {
 | 
						|
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
 | 
						|
                   "It must use GPUPlace.");
 | 
						|
    auto* input = ctx.Input<Tensor>("Input");
 | 
						|
    auto* filter = ctx.Input<Tensor>("Filter");
 | 
						|
    auto* output = ctx.Output<Tensor>("Output");
 | 
						|
 | 
						|
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
 | 
						|
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
 | 
						|
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
 | 
						|
    int groups = ctx.Attr<int>("groups");
 | 
						|
    int64_t user_workspace_size =
 | 
						|
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
 | 
						|
 | 
						|
    const T* input_data = input->data<T>();
 | 
						|
    const T* filter_data = filter->data<T>();
 | 
						|
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
 | 
						|
 | 
						|
    // ------------------- cudnn descriptors ---------------------
 | 
						|
    ScopedTensorDescriptor input_desc;
 | 
						|
    ScopedTensorDescriptor output_desc;
 | 
						|
    ScopedFilterDescriptor filter_desc;
 | 
						|
    ScopedConvolutionDescriptor conv_desc;
 | 
						|
    DataLayout layout = DataLayout::kNCHW;
 | 
						|
    if (input->dims().size() == 5) {
 | 
						|
      layout = DataLayout::kNCDHW;
 | 
						|
    }
 | 
						|
 | 
						|
    cudnnConvolutionDescriptor_t cudnn_conv_desc =
 | 
						|
        conv_desc.descriptor<T>(paddings, strides, dilations);
 | 
						|
 | 
						|
#if CUDNN_VERSION_MIN(7, 0, 1)
 | 
						|
    // cudnn 7 can support groups, no need to do it mannually
 | 
						|
    // FIXME(typhoonzero): find a better way to disable groups
 | 
						|
    // rather than setting it to 1.
 | 
						|
    PADDLE_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
 | 
						|
        cudnn_conv_desc, groups));
 | 
						|
    groups = 1;
 | 
						|
#endif
 | 
						|
 | 
						|
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
 | 
						|
        layout, framework::vectorize2int(input->dims()), groups);
 | 
						|
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
 | 
						|
        layout, framework::vectorize2int(output->dims()), groups);
 | 
						|
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
 | 
						|
        layout, framework::vectorize2int(filter->dims()), groups);
 | 
						|
 | 
						|
    int input_channels = input->dims()[1];
 | 
						|
    int input_height, input_width, input_depth;
 | 
						|
    if (input->dims().size() == 5) {
 | 
						|
      input_depth = input->dims()[2];
 | 
						|
      input_height = input->dims()[3];
 | 
						|
      input_width = input->dims()[4];
 | 
						|
    } else {  // dim size is enforced in InferShape
 | 
						|
      input_depth = 1;
 | 
						|
      input_height = input->dims()[2];
 | 
						|
      input_width = input->dims()[3];
 | 
						|
    }
 | 
						|
    int output_channels = filter->dims()[0];
 | 
						|
    int output_height, output_width, output_depth;
 | 
						|
    if (output->dims().size() == 5) {
 | 
						|
      output_depth = output->dims()[2];
 | 
						|
      output_height = output->dims()[3];
 | 
						|
      output_width = output->dims()[4];
 | 
						|
    } else {
 | 
						|
      output_depth = 1;
 | 
						|
      output_height = output->dims()[2];
 | 
						|
      output_width = output->dims()[3];
 | 
						|
    }
 | 
						|
 | 
						|
    int group_offset_in =
 | 
						|
        input_channels / groups * input_height * input_width * input_depth;
 | 
						|
    int group_offset_out =
 | 
						|
        output_channels / groups * output_height * output_width * output_depth;
 | 
						|
    int group_offset_filter = filter->numel() / groups;
 | 
						|
    // ------------------- cudnn conv workspace ---------------------
 | 
						|
    void* cudnn_workspace = nullptr;
 | 
						|
    size_t workspace_size_in_bytes;  // final workspace to allocate.
 | 
						|
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
 | 
						|
    if (user_workspace_size > 0) {
 | 
						|
      workspace_size_limit = user_workspace_size * 1024 * 1024;
 | 
						|
    }
 | 
						|
    // ------------------- cudnn conv algorithm ---------------------
 | 
						|
    cudnnConvolutionFwdAlgo_t algo;
 | 
						|
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
 | 
						|
    auto handle = dev_ctx.cudnn_handle();
 | 
						|
 | 
						|
    PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
 | 
						|
        handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
 | 
						|
        cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
 | 
						|
        workspace_size_limit, &algo));
 | 
						|
    // get workspace size able to allocate
 | 
						|
    PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
 | 
						|
        handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
 | 
						|
        cudnn_output_desc, algo, &workspace_size_in_bytes));
 | 
						|
    // Allocate on GPU memory
 | 
						|
    platform::GPUPlace gpu = boost::get<platform::GPUPlace>(ctx.GetPlace());
 | 
						|
    cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
 | 
						|
    // ------------------- cudnn conv forward ---------------------
 | 
						|
    T alpha = 1.0f, beta = 0.0f;
 | 
						|
    for (int i = 0; i < groups; i++) {
 | 
						|
      PADDLE_ENFORCE(platform::dynload::cudnnConvolutionForward(
 | 
						|
          handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
 | 
						|
          cudnn_filter_desc, filter_data + i * group_offset_filter,
 | 
						|
          cudnn_conv_desc, algo, cudnn_workspace, workspace_size_in_bytes,
 | 
						|
          &beta, cudnn_output_desc, output_data + i * group_offset_out));
 | 
						|
    }
 | 
						|
    // Release the cudnn workspace
 | 
						|
    paddle::memory::Free(gpu, cudnn_workspace);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class CudnnConvGradOpKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& ctx) const override {
 | 
						|
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
 | 
						|
                   "It must use GPUPlace.");
 | 
						|
    auto input = ctx.Input<Tensor>("Input");
 | 
						|
    auto filter = ctx.Input<Tensor>("Filter");
 | 
						|
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
 | 
						|
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
 | 
						|
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
 | 
						|
 | 
						|
    const T* input_data = input->data<T>();
 | 
						|
    const T* output_grad_data = output_grad->data<T>();
 | 
						|
    const T* filter_data = filter->data<T>();
 | 
						|
 | 
						|
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
 | 
						|
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
 | 
						|
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
 | 
						|
    int groups = ctx.Attr<int>("groups");
 | 
						|
    int64_t user_workspace_size =
 | 
						|
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
 | 
						|
 | 
						|
    // ------------------- cudnn descriptors ---------------------
 | 
						|
    ScopedTensorDescriptor input_desc;
 | 
						|
    ScopedTensorDescriptor output_grad_desc;
 | 
						|
 | 
						|
    ScopedFilterDescriptor filter_desc;
 | 
						|
    ScopedFilterDescriptor filter_grad_desc;
 | 
						|
    ScopedConvolutionDescriptor conv_desc;
 | 
						|
    DataLayout layout = DataLayout::kNCHW;
 | 
						|
    if (input->dims().size() == 5) {
 | 
						|
      layout = DataLayout::kNCDHW;
 | 
						|
    }
 | 
						|
 | 
						|
    cudnnConvolutionDescriptor_t cudnn_conv_desc =
 | 
						|
        conv_desc.descriptor<T>(paddings, strides, dilations);
 | 
						|
 | 
						|
#if CUDNN_VERSION_MIN(7, 0, 1)
 | 
						|
    // cudnn 7 can support groups, no need to do it mannually
 | 
						|
    // FIXME(typhoonzero): find a better way to disable groups
 | 
						|
    // rather than setting it to 1.
 | 
						|
    PADDLE_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
 | 
						|
        cudnn_conv_desc, groups));
 | 
						|
    groups = 1;
 | 
						|
#endif
 | 
						|
 | 
						|
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
 | 
						|
        layout, framework::vectorize2int(input->dims()), groups);
 | 
						|
    cudnnTensorDescriptor_t cudnn_output_grad_desc =
 | 
						|
        output_grad_desc.descriptor<T>(
 | 
						|
            layout, framework::vectorize2int(output_grad->dims()), groups);
 | 
						|
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
 | 
						|
        layout, framework::vectorize2int(filter->dims()), groups);
 | 
						|
 | 
						|
    int input_channels = input->dims()[1];
 | 
						|
    int input_height, input_width, input_depth;
 | 
						|
    if (input->dims().size() == 5) {
 | 
						|
      input_depth = input->dims()[2];
 | 
						|
      input_height = input->dims()[3];
 | 
						|
      input_width = input->dims()[4];
 | 
						|
    } else {  // dim size is enforced in InferShape
 | 
						|
      input_depth = 1;
 | 
						|
      input_height = input->dims()[2];
 | 
						|
      input_width = input->dims()[3];
 | 
						|
    }
 | 
						|
 | 
						|
    int output_grad_channels = filter->dims()[0];
 | 
						|
    int output_grad_height, output_grad_width, output_grad_depth;
 | 
						|
    if (input->dims().size() == 5) {
 | 
						|
      output_grad_depth = output_grad->dims()[2];
 | 
						|
      output_grad_height = output_grad->dims()[3];
 | 
						|
      output_grad_width = output_grad->dims()[4];
 | 
						|
    } else {
 | 
						|
      output_grad_depth = 1;
 | 
						|
      output_grad_height = output_grad->dims()[2];
 | 
						|
      output_grad_width = output_grad->dims()[3];
 | 
						|
    }
 | 
						|
 | 
						|
    int group_offset_in =
 | 
						|
        input_channels / groups * input_height * input_width * input_depth;
 | 
						|
    int group_offset_out = output_grad_channels / groups * output_grad_height *
 | 
						|
                           output_grad_width * output_grad_depth;
 | 
						|
    int group_offset_filter = filter->numel() / groups;
 | 
						|
    // ------------------- cudnn backward algorithm ---------------------
 | 
						|
    cudnnConvolutionBwdDataAlgo_t data_algo;
 | 
						|
    cudnnConvolutionBwdFilterAlgo_t filter_algo;
 | 
						|
    size_t workspace_size_in_bytes = 0, tmp_size = 0;
 | 
						|
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
 | 
						|
    if (user_workspace_size > 0) {
 | 
						|
      workspace_size_limit = user_workspace_size * 1024 * 1024;
 | 
						|
    }
 | 
						|
 | 
						|
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
 | 
						|
    auto handle = dev_ctx.cudnn_handle();
 | 
						|
    if (input_grad) {
 | 
						|
      PADDLE_ENFORCE(
 | 
						|
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
 | 
						|
              handle, cudnn_filter_desc,
 | 
						|
              // dyDesc: Handle to the previously initialized input differential
 | 
						|
              // tensor descriptor.
 | 
						|
              cudnn_output_grad_desc, cudnn_conv_desc,
 | 
						|
              // dxDesc: Handle to the previously initialized output tensor
 | 
						|
              // descriptor.
 | 
						|
              cudnn_input_desc,
 | 
						|
              CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
 | 
						|
              workspace_size_limit, &data_algo));
 | 
						|
      PADDLE_ENFORCE(
 | 
						|
          platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
 | 
						|
              handle, cudnn_filter_desc, cudnn_output_grad_desc,
 | 
						|
              cudnn_conv_desc, cudnn_input_desc, data_algo, &tmp_size));
 | 
						|
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
 | 
						|
    }
 | 
						|
 | 
						|
    if (filter_grad) {
 | 
						|
      PADDLE_ENFORCE(
 | 
						|
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
 | 
						|
              handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
 | 
						|
              cudnn_filter_desc,
 | 
						|
              CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
 | 
						|
              workspace_size_limit, &filter_algo));
 | 
						|
 | 
						|
      PADDLE_ENFORCE(
 | 
						|
          platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
 | 
						|
              handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
 | 
						|
              cudnn_filter_desc, filter_algo, &tmp_size));
 | 
						|
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
 | 
						|
    }
 | 
						|
    // ------------------- cudnn conv workspace ---------------------
 | 
						|
    // Already on GPU
 | 
						|
    void* cudnn_workspace = nullptr;
 | 
						|
    platform::GPUPlace gpu = boost::get<platform::GPUPlace>(ctx.GetPlace());
 | 
						|
    cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
 | 
						|
    // ------------------- cudnn conv backward data ---------------------
 | 
						|
    T alpha = 1.0f, beta = 0.0f;
 | 
						|
    if (input_grad) {
 | 
						|
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
 | 
						|
      // Because beta is zero, it is unnecessary to reset input_grad.
 | 
						|
 | 
						|
      for (int i = 0; i < groups; i++) {
 | 
						|
        PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
 | 
						|
            handle, &alpha, cudnn_filter_desc,
 | 
						|
            filter_data + i * group_offset_filter, cudnn_output_grad_desc,
 | 
						|
            output_grad_data + i * group_offset_out, cudnn_conv_desc, data_algo,
 | 
						|
            cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_input_desc,
 | 
						|
            input_grad_data + i * group_offset_in));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // ------------------- cudnn conv backward filter ---------------------
 | 
						|
    if (filter_grad) {
 | 
						|
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
 | 
						|
      // Because beta is zero, it is unnecessary to reset filter_grad.
 | 
						|
      for (int i = 0; i < groups; i++) {
 | 
						|
        PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
 | 
						|
            handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
 | 
						|
            cudnn_output_grad_desc, output_grad_data + i * group_offset_out,
 | 
						|
            cudnn_conv_desc, filter_algo, cudnn_workspace,
 | 
						|
            workspace_size_in_bytes, &beta, cudnn_filter_desc,
 | 
						|
            filter_grad_data + i * group_offset_filter));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Release the cudnn workspace
 | 
						|
    paddle::memory::Free(gpu, cudnn_workspace);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
 | 
						|
REGISTER_OP_CUDA_KERNEL(conv2d_cudnn,
 | 
						|
                        paddle::operators::CudnnConvOpKernel<float>,
 | 
						|
                        paddle::operators::CudnnConvOpKernel<double>);
 | 
						|
REGISTER_OP_CUDA_KERNEL(conv2d_cudnn_grad,
 | 
						|
                        paddle::operators::CudnnConvGradOpKernel<float>,
 | 
						|
                        paddle::operators::CudnnConvGradOpKernel<double>);
 | 
						|
 | 
						|
REGISTER_OP_CUDA_KERNEL(conv3d_cudnn,
 | 
						|
                        paddle::operators::CudnnConvOpKernel<float>,
 | 
						|
                        paddle::operators::CudnnConvOpKernel<double>);
 | 
						|
REGISTER_OP_CUDA_KERNEL(conv3d_cudnn_grad,
 | 
						|
                        paddle::operators::CudnnConvGradOpKernel<float>,
 | 
						|
                        paddle::operators::CudnnConvGradOpKernel<double>);
 |