You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/mkldnn/dequantize_mkldnn_op.cc

126 lines
5.0 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "mkldnn.hpp"
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/dequantize_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"
namespace paddle {
namespace operators {
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using platform::to_void_cast;
using Tensor = framework::Tensor;
using framework::DataLayout;
using mkldnn::stream;
using platform::GetMKLDNNFormat;
std::string CreateKey(const paddle::framework::ExecutionContext& ctx,
const mkldnn::memory::data_type& src_dt,
const std::vector<int>& src_tz, const float scale_data) {
std::string key;
key.reserve(platform::MKLDNNHandler::MaxKeyLength);
platform::MKLDNNHandler::AppendKey(&key, std::to_string(src_dt));
platform::MKLDNNHandler::AppendKeyDims(&key, src_tz);
platform::MKLDNNHandler::AppendKey(&key, std::to_string(scale_data));
platform::MKLDNNHandler::AppendKey(&key, ctx.op().Output("Output"));
return key;
}
template <typename T>
class DeQuantOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<Tensor>("Input");
auto scale_data = ctx.Attr<float>("Scale");
auto* output = ctx.Output<Tensor>("Output");
auto& dev_ctx =
ctx.template device_context<platform::MKLDNNDeviceContext>();
const auto& engine = dev_ctx.GetEngine();
const T* input_data = input->data<T>();
float* output_data = output->mutable_data<float>(ctx.GetPlace());
std::vector<float> reorder_scale = {1.0f / scale_data};
std::vector<primitive> pipeline;
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
mkldnn::memory::data_type src_dt =
paddle::framework::ToMKLDNNDataType(input->type());
mkldnn::memory::format src_fmt = input->format();
std::string key = CreateKey(ctx, src_dt, src_tz, reorder_scale[0]);
const std::string key_prim = key + "@reorder_p";
const std::string key_src_mem = key + "@src_mem";
const std::string key_dst_mem = key + "@dst_mem";
std::shared_ptr<mkldnn::memory> src_memory;
std::shared_ptr<mkldnn::memory> dst_memory;
std::shared_ptr<reorder> reorder_p;
reorder_p = std::static_pointer_cast<reorder>(dev_ctx.GetBlob(key_prim));
if (reorder_p == nullptr) {
mkldnn::primitive_attr attri;
int mask = 0;
attri.set_output_scales(mask, reorder_scale);
auto src_md = platform::MKLDNNMemDesc({src_tz}, src_dt, src_fmt);
auto src_pd = mkldnn::memory::primitive_desc(src_md, engine);
src_memory =
std::make_shared<mkldnn::memory>(src_pd, to_void_cast<T>(input_data));
std::shared_ptr<primitive::at> src_memory_p =
std::shared_ptr<primitive::at>(new primitive::at(*src_memory));
auto dst_md = platform::MKLDNNMemDesc({dst_tz}, memory::data_type::f32,
memory::format::nchw);
auto dst_pd = mkldnn::memory::primitive_desc(dst_md, engine);
dst_memory = std::make_shared<mkldnn::memory>(
dst_pd, to_void_cast<float>(output_data));
auto reorder_pd = std::shared_ptr<reorder::primitive_desc>(
new reorder::primitive_desc(src_pd, dst_pd, attri));
reorder_p = std::shared_ptr<reorder>(
new reorder(*reorder_pd, *src_memory_p, *dst_memory));
dev_ctx.SetBlob(key_prim, reorder_p);
dev_ctx.SetBlob(key_src_mem, src_memory);
dev_ctx.SetBlob(key_dst_mem, dst_memory);
} else {
src_memory = std::static_pointer_cast<mkldnn::memory>(
dev_ctx.GetBlob(key_src_mem));
src_memory->set_data_handle(to_void_cast<T>(input_data));
dst_memory = std::static_pointer_cast<mkldnn::memory>(
dev_ctx.GetBlob(key_dst_mem));
dst_memory->set_data_handle(output->mutable_data<float>(ctx.GetPlace()));
}
pipeline.push_back(*reorder_p);
stream(stream::kind::eager).submit(pipeline).wait();
output->set_format(GetMKLDNNFormat(*dst_memory));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_KERNEL(dequantize, MKLDNN, ::paddle::platform::CPUPlace,
ops::DeQuantOpKernel<uint8_t>, ops::DeQuantOpKernel<int8_t>);