You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_dist_base.py

603 lines
22 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import time
import unittest
import os
import sys
import signal
import subprocess
import six
import argparse
import pickle
import numpy as np
import paddle.fluid as fluid
from paddle.fluid import compiler
RUN_STEP = 10
DEFAULT_BATCH_SIZE = 2
class TestDistRunnerBase(object):
def get_model(self,
batch_size=DEFAULT_BATCH_SIZE,
lr=0.1,
single_device=False,
use_dgc=False):
raise NotImplementedError(
"get_model should be implemented by child classes.")
@staticmethod
def get_transpiler(trainer_id,
main_program,
pserver_endpoints,
trainers,
sync_mode,
dc_asgd=False,
current_endpoint=None):
# NOTE: import fluid until runtime, or else forking processes will cause error.
config = fluid.DistributeTranspilerConfig()
config.enable_dc_asgd = dc_asgd
t = fluid.DistributeTranspiler(config=config)
t.transpile(
trainer_id=trainer_id,
program=main_program,
pservers=pserver_endpoints,
trainers=trainers,
sync_mode=sync_mode,
current_endpoint=current_endpoint)
return t
def run_pserver(self, args):
self.lr = args.lr
self.get_model(batch_size=args.batch_size)
# NOTE: pserver should not call memory optimize
t = self.get_transpiler(args.trainer_id,
fluid.default_main_program(), args.endpoints,
args.trainers, args.sync_mode, args.dc_asgd)
pserver_prog = t.get_pserver_program(args.current_endpoint)
startup_prog = t.get_startup_program(args.current_endpoint,
pserver_prog)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
exe.run(pserver_prog)
def run_trainer(self, args):
self.lr = args.lr
if args.nccl2_reduce_layer_local_run:
test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
self.get_model(batch_size=args.batch_size, single_device=True)
elif args.use_dgc:
test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
else:
test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
self.get_model(batch_size=args.batch_size)
if args.mem_opt:
fluid.memory_optimize(fluid.default_main_program(), skip_grads=True)
if args.update_method == "pserver":
t = self.get_transpiler(args.trainer_id,
fluid.default_main_program(),
args.endpoints, args.trainers,
args.sync_mode, args.dc_asgd)
trainer_prog = t.get_trainer_program()
elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
# transpile for nccl2
config = fluid.DistributeTranspilerConfig()
config.mode = "nccl2"
nccl2_t = fluid.DistributeTranspiler(config=config)
nccl2_t.transpile(
args.trainer_id,
program=fluid.default_main_program(),
startup_program=fluid.default_startup_program(),
trainers=args.endpoints,
current_endpoint=args.current_endpoint)
trainer_prog = fluid.default_main_program()
else:
trainer_prog = fluid.default_main_program()
if args.use_cuda:
device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
place = fluid.CUDAPlace(device_id)
else:
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.num_threads = 1
exec_strategy.allow_op_delay = False
build_stra = fluid.BuildStrategy()
# FIXME force disable enable_inplace and memory_optimize
build_stra.enable_inplace = False
build_stra.memory_optimize = False
if args.use_reduce:
build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
else:
build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce
pass_builder = None
if args.batch_merge_repeat > 1:
pass_builder = build_stra._finalize_strategy_and_create_passes()
mypass = pass_builder.insert_pass(
len(pass_builder.all_passes()) - 3, "multi_batch_merge_pass")
mypass.set("num_repeats", args.batch_merge_repeat)
if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
build_stra.num_trainers = len(args.endpoints.split(","))
build_stra.trainer_id = args.trainer_id
else:
# case args.update_method == "nccl2_reduce_layer":
build_stra.num_trainers = 1
build_stra.trainer_id = 0
binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
loss_name=avg_cost.name,
build_strategy=build_stra,
exec_strategy=exec_strategy)
feed_var_list = [
var for var in trainer_prog.global_block().vars.values()
if var.is_data
]
feeder = fluid.DataFeeder(feed_var_list, place)
reader_generator = train_reader()
def get_data():
origin_batch = next(reader_generator)
if args.update_method != "local" and args.use_reader_alloc:
new_batch = []
for offset, item in enumerate(origin_batch):
if offset % 2 == args.trainer_id:
new_batch.append(item)
return new_batch
else:
return origin_batch
out_losses = []
for _ in six.moves.xrange(RUN_STEP):
loss, = exe.run(binary,
fetch_list=[avg_cost.name],
feed=feeder.feed(get_data()))
out_losses.append(loss[0])
if six.PY2:
print(pickle.dumps(out_losses))
else:
sys.stdout.buffer.write(pickle.dumps(out_losses))
def runtime_main(test_class):
parser = argparse.ArgumentParser(description='Run dist test.')
parser.add_argument(
'--role', type=str, required=True, choices=['pserver', 'trainer'])
parser.add_argument('--endpoints', type=str, required=False, default="")
parser.add_argument(
'--update_method',
type=str,
default="local",
choices=["pserver", "nccl2", "local", "nccl2_reduce_layer"])
parser.add_argument('--trainer_id', type=int, required=False, default=0)
parser.add_argument('--trainers', type=int, required=False, default=1)
parser.add_argument(
'--current_endpoint', type=str, required=False, default="")
parser.add_argument('--sync_mode', action='store_true')
parser.add_argument('--mem_opt', action='store_true')
parser.add_argument('--use_cuda', action='store_true')
parser.add_argument('--use_dgc', action='store_true')
parser.add_argument('--use_reduce', action='store_true')
parser.add_argument('--dc_asgd', action='store_true')
parser.add_argument(
'--use_reader_alloc', action='store_true', required=False)
parser.add_argument('--batch_size', required=False, type=int, default=2)
parser.add_argument('--lr', required=False, type=float, default=0.001)
parser.add_argument(
'--batch_merge_repeat', required=False, type=int, default=1)
parser.add_argument(
'--nccl2_reduce_layer_local_run',
required=False,
type=bool,
default=False)
args = parser.parse_args()
model = test_class()
if args.role == "pserver" and args.update_method == "pserver":
model.run_pserver(args)
else:
model.run_trainer(args)
import paddle.compat as cpt
import socket
from contextlib import closing
class TestDistBase(unittest.TestCase):
def _setup_config(self):
raise NotImplementedError("tests should have _setup_config implemented")
def _after_setup_config(self):
if self._enforce_place == "CPU":
self.__use_cuda = False
self._use_dgc = False
elif self._enforce_place == "GPU":
self.__use_cuda = True
else:
if fluid.core.is_compiled_with_cuda():
self.__use_cuda = True
else:
self.__use_cuda = False
self._use_dgc = False
if self._use_reduce:
assert not self._use_dgc
def setUp(self):
self._trainers = 2
self._pservers = 2
self._port_set = set()
self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
self._find_free_port(), self._find_free_port())
self._python_interp = sys.executable
self._sync_mode = True
self._enforce_place = None
self._mem_opt = False
self._use_reduce = False
self._dc_asgd = False # must use with async mode
self._use_reader_alloc = True
self._nccl2_mode = False
self._mp_mode = False
# FIXME(typhoonzero): I added this stupid argument to enable
# testing allreduce layers, which users can call layers.allreduce
# to accumulate tensors at anywhere. Find a better way to do this
# test, reduce check this argument everywhere.
self._nccl2_reduce_layer = False
self._lr = 0.001
self._use_dgc = False
self._setup_config()
self._after_setup_config()
def _find_free_port(self):
def __free_port():
with closing(socket.socket(socket.AF_INET,
socket.SOCK_STREAM)) as s:
s.bind(('', 0))
return s.getsockname()[1]
while True:
port = __free_port()
if port not in self._port_set:
self._port_set.add(port)
return port
def start_pserver(self, model_file, check_error_log, required_envs):
ps0_ep, ps1_ep = self._ps_endpoints.split(",")
ps_cmd = "%s %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"
ps0_cmd = ps_cmd % \
(self._python_interp, model_file, self._ps_endpoints, ps0_ep,
self._trainers)
ps1_cmd = ps_cmd % \
(self._python_interp, model_file, self._ps_endpoints, ps1_ep,
self._trainers)
if self._sync_mode:
ps0_cmd += " --sync_mode"
ps1_cmd += " --sync_mode"
if self._mem_opt:
ps0_cmd += " --mem_opt"
ps1_cmd += " --mem_opt"
print(ps0_cmd)
print(ps1_cmd)
ps0_pipe = open("/tmp/ps0_err.log", "wb")
ps1_pipe = open("/tmp/ps1_err.log", "wb")
ps0_proc = subprocess.Popen(
ps0_cmd.strip().split(" "),
stdout=subprocess.PIPE,
stderr=ps0_pipe,
env=required_envs)
ps1_proc = subprocess.Popen(
ps1_cmd.strip().split(" "),
stdout=subprocess.PIPE,
stderr=ps1_pipe,
env=required_envs)
return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
def _run_local(self,
model,
envs,
check_error_log=False,
batch_size=DEFAULT_BATCH_SIZE,
batch_merge_repeat=1):
cmd = "%s %s --role trainer --lr %f" % (self._python_interp, model,
self._lr)
if batch_size != DEFAULT_BATCH_SIZE:
cmd += " --batch_size %d" % batch_size
if batch_merge_repeat > 1:
cmd += " --batch_merge_repeat %d" % batch_merge_repeat
if self._nccl2_reduce_layer:
cmd += " --nccl2_reduce_layer_local_run 1"
if self.__use_cuda:
cmd += " --use_cuda"
env_local = {
"CUDA_VISIBLE_DEVICES": "0",
"PADDLE_TRAINERS_NUM": "1",
"PADDLE_TRAINER_ID": "0"
}
else:
env_local = {'CPU_NUM': '1'}
env_local.update(envs)
print("local_cmd: {}, env: {}".format(cmd, env_local))
if check_error_log:
err_log = open("/tmp/trainer.err.log", "wb")
local_proc = subprocess.Popen(
cmd.split(" "),
stdout=subprocess.PIPE,
stderr=err_log,
env=env_local)
else:
local_proc = subprocess.Popen(
cmd.split(" "),
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
env=env_local)
local_out, local_err = local_proc.communicate()
if check_error_log:
err_log.close()
sys.stderr.write('local_stderr: %s\n' % local_err)
sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
return pickle.loads(local_out)
def _run_cluster(self, model, envs, check_error_log):
# Run dist train to compare with local results
ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(model,
check_error_log, envs)
ps0_ep, ps1_ep = self._ps_endpoints.split(",")
tr_cmd = "%s %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"
tr0_cmd = tr_cmd % \
(self._python_interp, model, self._ps_endpoints,
0, ps0_ep, self._trainers, self._lr)
tr1_cmd = tr_cmd % \
(self._python_interp, model, self._ps_endpoints,
1, ps1_ep, self._trainers, self._lr)
if self._sync_mode:
tr0_cmd += " --sync_mode"
tr1_cmd += " --sync_mode"
if self._mem_opt:
tr0_cmd += " --mem_opt"
tr1_cmd += " --mem_opt"
if self._use_reduce:
tr0_cmd += " --use_reduce"
tr1_cmd += " --use_reduce"
if self._use_reader_alloc:
tr0_cmd += " --use_reader_alloc"
tr1_cmd += " --use_reader_alloc"
if self.__use_cuda:
tr0_cmd += " --use_cuda"
tr1_cmd += " --use_cuda"
env0 = {"CUDA_VISIBLE_DEVICES": "0"}
env1 = {"CUDA_VISIBLE_DEVICES": "1"}
else:
env0 = {'CPU_NUM': '1'}
env1 = {'CPU_NUM': '1'}
env0.update(envs)
env1.update(envs)
print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
tr0_pipe = open("/tmp/tr0_err.log", "wb")
tr1_pipe = open("/tmp/tr1_err.log", "wb")
tr0_proc = subprocess.Popen(
tr0_cmd.strip().split(" "),
stdout=subprocess.PIPE,
stderr=tr0_pipe,
env=env0)
tr1_proc = subprocess.Popen(
tr1_cmd.strip().split(" "),
stdout=subprocess.PIPE,
stderr=tr1_pipe,
env=env1)
# Wait until trainer process terminate
while True:
stat0 = tr0_proc.poll()
time.sleep(0.1)
if stat0 is not None:
break
while True:
stat1 = tr1_proc.poll()
time.sleep(0.1)
if stat1 is not None:
break
tr0_out, tr0_err = tr0_proc.communicate()
tr1_out, tr1_err = tr1_proc.communicate()
# close trainer file
tr0_pipe.close()
tr1_pipe.close()
ps0_pipe.close()
ps1_pipe.close()
ps0.terminate()
ps1.terminate()
# print server log
with open("/tmp/ps0_err.log", "r") as fn:
sys.stderr.write("ps0 stderr: %s\n" % fn.read())
with open("/tmp/ps1_err.log", "r") as fn:
sys.stderr.write("ps1 stderr: %s\n" % fn.read())
# print log
with open("/tmp/tr0_err.log", "r") as fn:
sys.stderr.write('trainer 0 stderr: %s\n' % fn.read())
with open("/tmp/tr1_err.log", "r") as fn:
sys.stderr.write('trainer 1 stderr: %s\n' % fn.read())
return pickle.loads(tr0_out), pickle.loads(tr1_out)
def _run_cluster_nccl2(self, model, envs, nccl2_reduce_layer,
check_error_log):
# NOTE: we reuse ps_endpoints as nccl2 worker endpoints
worker_endpoints = self._ps_endpoints.split(",")
w0_ep, w1_ep = worker_endpoints
if nccl2_reduce_layer:
update_method = "nccl2_reduce_layer"
else:
update_method = "nccl2"
tr_cmd = "%s %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"
tr0_cmd = tr_cmd % \
(self._python_interp, model, self._ps_endpoints,
0, w0_ep, update_method, self._lr)
tr1_cmd = tr_cmd % \
(self._python_interp, model, self._ps_endpoints,
1, w1_ep, update_method, self._lr)
if self._mem_opt:
tr0_cmd += " --mem_opt"
tr1_cmd += " --mem_opt"
if self._use_reduce:
tr0_cmd += " --use_reduce"
tr1_cmd += " --use_reduce"
if self._use_reader_alloc:
tr0_cmd += " --use_reader_alloc"
tr1_cmd += " --use_reader_alloc"
if self.__use_cuda:
tr0_cmd += " --use_cuda"
tr1_cmd += " --use_cuda"
env0 = {
"CUDA_VISIBLE_DEVICES": "0",
# for test nccl2 layer
"PADDLE_TRAINERS_NUM": "2",
"PADDLE_TRAINER_ID": "0"
}
env1 = {
"CUDA_VISIBLE_DEVICES": "1",
"PADDLE_TRAINERS_NUM": "2",
"PADDLE_TRAINER_ID": "1"
}
else:
env0 = {'CPU_NUM': '1'}
env1 = {'CPU_NUM': '1'}
if self._use_dgc:
tr0_cmd += " --use_dgc"
tr1_cmd += " --use_dgc"
if self._mp_mode:
env0 = {"FLAGS_selected_gpus": "0"}
env1 = {"FLAGS_selected_gpus": "1"}
env0.update(envs)
env1.update(envs)
print("tr0_cmd:{}, env: {}".format(tr0_cmd, env0))
print("tr1_cmd:{}, env: {}".format(tr1_cmd, env1))
tr0_pipe = open("/tmp/tr0_err.log", "wb")
tr1_pipe = open("/tmp/tr1_err.log", "wb")
tr0_proc = subprocess.Popen(
tr0_cmd.strip().split(" "),
stdout=subprocess.PIPE,
stderr=tr0_pipe,
env=env0)
tr1_proc = subprocess.Popen(
tr1_cmd.strip().split(" "),
stdout=subprocess.PIPE,
stderr=tr1_pipe,
env=env1)
tr0_out, tr0_err = tr0_proc.communicate()
tr1_out, tr1_err = tr1_proc.communicate()
# close trainer file
tr0_pipe.close()
tr1_pipe.close()
# print log
sys.stderr.write('trainer 0 stderr: %s\n' % tr0_err)
sys.stderr.write('trainer 1 stderr: %s\n' % tr1_err)
return pickle.loads(tr0_out), pickle.loads(tr1_out)
def check_with_place(self,
model_file,
delta=1e-3,
check_error_log=False,
need_envs={}):
# TODO(typhoonzero): should auto adapt GPU count on the machine.
required_envs = {
"PATH": os.getenv("PATH", ""),
"PYTHONPATH": os.getenv("PYTHONPATH", ""),
"LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
"FLAGS_fraction_of_gpu_memory_to_use": "0.15",
"FLAGS_rpc_deadline": "5000", # 5sec to fail fast
"FLAGS_cudnn_deterministic": "1",
"http_proxy": "",
"NCCL_P2P_DISABLE": "1"
}
required_envs.update(need_envs)
if check_error_log:
required_envs["GLOG_v"] = "3"
required_envs["GLOG_logtostderr"] = "1"
local_losses\
= self._run_local(model_file, required_envs,
check_error_log)
if self._nccl2_mode:
if self._nccl2_reduce_layer:
tr0_losses, tr1_losses = self._run_cluster_nccl2(
model_file, required_envs, True, check_error_log)
else:
tr0_losses, tr1_losses = self._run_cluster_nccl2(
model_file, required_envs, False, check_error_log)
else:
tr0_losses, tr1_losses = self._run_cluster(
model_file, required_envs, check_error_log)
for step_id in range(RUN_STEP):
local_loss = local_losses[step_id]
tr0_loss = tr0_losses[step_id]
tr1_loss = tr1_losses[step_id]
dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
print("=======", local_loss, ":", dist_loss[0], "=======")
self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)