You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
162 lines
5.7 KiB
162 lines
5.7 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
from paddle.fluid.framework import default_main_program, Program, convert_np_dtype_to_dtype_
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.core as core
|
|
import numpy as np
|
|
from test_imperative_base import new_program_scope
|
|
|
|
|
|
class TestVariable(unittest.TestCase):
|
|
def test_np_dtype_convert(self):
|
|
DT = core.VarDesc.VarType
|
|
convert = convert_np_dtype_to_dtype_
|
|
self.assertEqual(DT.FP32, convert(np.float32))
|
|
self.assertEqual(DT.FP16, convert("float16"))
|
|
self.assertEqual(DT.FP64, convert("float64"))
|
|
self.assertEqual(DT.INT32, convert("int32"))
|
|
self.assertEqual(DT.INT16, convert("int16"))
|
|
self.assertEqual(DT.INT64, convert("int64"))
|
|
self.assertEqual(DT.BOOL, convert("bool"))
|
|
self.assertEqual(DT.INT8, convert("int8"))
|
|
self.assertEqual(DT.UINT8, convert("uint8"))
|
|
|
|
def test_var(self):
|
|
b = default_main_program().current_block()
|
|
w = b.create_var(
|
|
dtype="float64", shape=[784, 100], lod_level=0, name="fc.w")
|
|
self.assertNotEqual(str(w), "")
|
|
self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
|
|
self.assertEqual((784, 100), w.shape)
|
|
self.assertEqual("fc.w", w.name)
|
|
self.assertEqual(0, w.lod_level)
|
|
|
|
w = b.create_var(name='fc.w')
|
|
self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
|
|
self.assertEqual((784, 100), w.shape)
|
|
self.assertEqual("fc.w", w.name)
|
|
self.assertEqual(0, w.lod_level)
|
|
|
|
self.assertRaises(ValueError,
|
|
lambda: b.create_var(name="fc.w", shape=(24, 100)))
|
|
|
|
def test_step_scopes(self):
|
|
prog = Program()
|
|
b = prog.current_block()
|
|
var = b.create_var(
|
|
name='step_scopes', type=core.VarDesc.VarType.STEP_SCOPES)
|
|
self.assertEqual(core.VarDesc.VarType.STEP_SCOPES, var.type)
|
|
|
|
def _test_slice(self):
|
|
b = default_main_program().current_block()
|
|
w = b.create_var(dtype="float64", shape=[784, 100, 100], lod_level=0)
|
|
|
|
for i in range(3):
|
|
nw = w[i]
|
|
self.assertEqual((1, 100, 100), nw.shape)
|
|
|
|
nw = w[:]
|
|
self.assertEqual((784, 100, 100), nw.shape)
|
|
|
|
nw = w[:, :, ...]
|
|
self.assertEqual((784, 100, 100), nw.shape)
|
|
|
|
nw = w[::2, ::2, :]
|
|
self.assertEqual((392, 50, 100), nw.shape)
|
|
|
|
nw = w[::-2, ::-2, :]
|
|
self.assertEqual((392, 50, 100), nw.shape)
|
|
|
|
self.assertEqual(0, nw.lod_level)
|
|
|
|
place = fluid.CPUPlace()
|
|
main = fluid.Program()
|
|
with fluid.program_guard(main):
|
|
exe = fluid.Executor(place)
|
|
tensor_array = np.array(
|
|
[[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
|
|
[[10, 11, 12], [13, 14, 15], [16, 17, 18]],
|
|
[[19, 20, 21], [22, 23, 24], [25, 26, 27]]]).astype('float32')
|
|
var = fluid.layers.assign(tensor_array)
|
|
var1 = var[0, 1, 1]
|
|
var2 = var[1:]
|
|
var3 = var[0:1]
|
|
var4 = var[..., ]
|
|
var5 = var[2::-2]
|
|
var6 = var[1, 1:, 1:]
|
|
var7 = var[1, ..., 1:]
|
|
var8 = var[1, ...]
|
|
local_out = exe.run(main,
|
|
fetch_list=[
|
|
var, var1, var2, var3, var4, var5, var6,
|
|
var7, var8
|
|
])
|
|
|
|
self.assertTrue((np.array(local_out[1]) == np.array(tensor_array[
|
|
0, 1, 1])).all())
|
|
self.assertTrue((np.array(local_out[2]) == np.array(tensor_array[
|
|
1:])).all())
|
|
self.assertTrue((np.array(local_out[3]) == np.array(tensor_array[
|
|
0:1])).all())
|
|
self.assertTrue((np.array(local_out[4]) == np.array(
|
|
tensor_array[..., ])).all())
|
|
self.assertTrue((np.array(local_out[5]) == np.array(tensor_array[
|
|
2::-2])).all())
|
|
self.assertTrue((np.array(local_out[6]) == np.array(tensor_array[
|
|
1, 1:, 1:])).all())
|
|
self.assertTrue((np.array(local_out[7]) == np.array(tensor_array[
|
|
1, ..., 1:])).all())
|
|
self.assertTrue((np.array(local_out[8]) == np.array(tensor_array[
|
|
1, ...])).all())
|
|
|
|
def test_slice(self):
|
|
self._test_slice()
|
|
|
|
|
|
class TestVariableImperative(unittest.TestCase):
|
|
def _test_slice(self):
|
|
b = default_main_program().current_block()
|
|
w = b.create_var(dtype="float64", shape=[784, 100, 100], lod_level=0)
|
|
|
|
for i in range(3):
|
|
nw = w[i]
|
|
self.assertEqual([1, 100, 100], nw.shape)
|
|
|
|
nw = w[:]
|
|
self.assertEqual([784, 100, 100], nw.shape)
|
|
|
|
nw = w[:, :, :]
|
|
self.assertEqual([784, 100, 100], nw.shape)
|
|
|
|
nw = w[::2, ::2, :]
|
|
self.assertEqual([392, 50, 100], nw.shape)
|
|
|
|
nw = w[::-2, ::-2, :]
|
|
self.assertEqual([392, 50, 100], nw.shape)
|
|
|
|
nw = w[0::-2, 0::-2, :]
|
|
self.assertEqual([1, 1, 100], nw.shape)
|
|
|
|
def test_slice(self):
|
|
with fluid.imperative.guard():
|
|
self._test_slice()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|