You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
69 lines
2.2 KiB
69 lines
2.2 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
|
|
|
|
class TestConcatOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "concat"
|
|
self.init_test_data()
|
|
self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]}
|
|
self.attrs = {'axis': self.axis}
|
|
self.outputs = {
|
|
'Out': np.concatenate(
|
|
(self.x0, self.x1, self.x2), axis=self.axis)
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['x0'], 'Out')
|
|
self.check_grad(['x1'], 'Out')
|
|
self.check_grad(['x2'], 'Out')
|
|
|
|
def init_test_data(self):
|
|
self.x0 = np.random.random((2, 1, 4, 5)).astype('float32')
|
|
self.x1 = np.random.random((2, 2, 4, 5)).astype('float32')
|
|
self.x2 = np.random.random((2, 3, 4, 5)).astype('float32')
|
|
self.axis = 1
|
|
|
|
|
|
class TestConcatOp2(TestConcatOp):
|
|
def init_test_data(self):
|
|
self.x0 = np.random.random((2, 3, 4, 5)).astype('float32')
|
|
self.x1 = np.random.random((2, 3, 4, 5)).astype('float32')
|
|
self.x2 = np.random.random((2, 3, 4, 5)).astype('float32')
|
|
self.axis = 1
|
|
|
|
|
|
class TestConcatOp3(TestConcatOp):
|
|
def init_test_data(self):
|
|
self.x0 = np.random.random((1, 256, 170, 256)).astype('float32')
|
|
self.x1 = np.random.random((1, 128, 170, 256)).astype('float32')
|
|
self.x2 = np.random.random((1, 128, 170, 256)).astype('float32')
|
|
self.axis = 1
|
|
|
|
def test_check_grad(self):
|
|
pass
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|