You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
189 lines
4.7 KiB
189 lines
4.7 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#ifndef HL_ACTIVATION_FUNCTIONS_H_
|
|
#define HL_ACTIVATION_FUNCTIONS_H_
|
|
|
|
#include "hl_functions.h"
|
|
#include "paddle/operators/math/lstm_compute.h"
|
|
|
|
/**
|
|
* Active functions: sigmoid, relu, tanh and linear.
|
|
*/
|
|
#define FLOAT_ACTIVE_FUNCTION \
|
|
{ \
|
|
hppl::typef::sigmoid, hppl::typef::relu, hppl::typef::tanh, \
|
|
hppl::typef::linear \
|
|
}
|
|
|
|
#define DOUBLE_ACTIVE_FUNCTION \
|
|
{ \
|
|
hppl::typed::sigmoid, hppl::typed::relu, hppl::typed::tanh, \
|
|
hppl::typed::linear \
|
|
}
|
|
|
|
#define AVX_ACTIVE_FUNCTION \
|
|
{ hppl::sigmoid, hppl::relu, hppl::tanh, hppl::linear }
|
|
|
|
namespace hppl {
|
|
|
|
using activation_mode_t = paddle::operators::math::activation_mode_t;
|
|
|
|
/**
|
|
* Hppl supports sigmoid, relu, tanh, linear active functions
|
|
* for neural networks' forward and backward activation.
|
|
*/
|
|
template <class T>
|
|
class Active {
|
|
public:
|
|
typedef T (*forward)(T);
|
|
typedef T (*backward)(T, T);
|
|
};
|
|
|
|
template <typename T>
|
|
struct ForwardActType;
|
|
|
|
template <>
|
|
struct ForwardActType<float> {
|
|
using type = Active<float>::forward;
|
|
};
|
|
|
|
template <>
|
|
struct ForwardActType<double> {
|
|
using type = Active<double>::forward;
|
|
};
|
|
|
|
template <typename T>
|
|
struct BackwardActType;
|
|
|
|
template <>
|
|
struct BackwardActType<float> {
|
|
using type = Active<float>::backward;
|
|
};
|
|
|
|
template <>
|
|
struct BackwardActType<double> {
|
|
using type = Active<double>::backward;
|
|
};
|
|
|
|
#ifdef __NVCC__
|
|
namespace gpu {
|
|
static __device__ Active<float>::forward forward[] = FLOAT_ACTIVE_FUNCTION;
|
|
static __device__ Active<float>::backward backward[] = FLOAT_ACTIVE_FUNCTION;
|
|
|
|
static __device__ Active<double>::forward forward_d[] = DOUBLE_ACTIVE_FUNCTION;
|
|
static __device__ Active<double>::backward backward_d[] =
|
|
DOUBLE_ACTIVE_FUNCTION;
|
|
|
|
template <typename T>
|
|
struct ForwardAct {
|
|
__device__ typename ForwardActType<T>::type operator()(
|
|
activation_mode_t type);
|
|
};
|
|
|
|
template <>
|
|
struct ForwardAct<float> {
|
|
__device__ ForwardActType<float>::type operator()(activation_mode_t type) {
|
|
return forward[type];
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct ForwardAct<double> {
|
|
__device__ ForwardActType<double>::type operator()(activation_mode_t type) {
|
|
return forward_d[type];
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct BackwardAct {
|
|
__device__ typename BackwardActType<T>::type operator()(
|
|
activation_mode_t type);
|
|
};
|
|
|
|
template <>
|
|
struct BackwardAct<float> {
|
|
__device__ BackwardActType<float>::type operator()(activation_mode_t type) {
|
|
return backward[type];
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct BackwardAct<double> {
|
|
__device__ BackwardActType<double>::type operator()(activation_mode_t type) {
|
|
return backward_d[type];
|
|
}
|
|
};
|
|
|
|
} // namespace gpu
|
|
#else
|
|
namespace cpu {
|
|
static Active<float>::forward forward[] = FLOAT_ACTIVE_FUNCTION;
|
|
static Active<float>::backward backward[] = FLOAT_ACTIVE_FUNCTION;
|
|
|
|
static Active<double>::forward forward_d[] = DOUBLE_ACTIVE_FUNCTION;
|
|
static Active<double>::backward backward_d[] = DOUBLE_ACTIVE_FUNCTION;
|
|
|
|
template <typename T>
|
|
struct ForwardAct {
|
|
typename ForwardActType<T>::type operator()(activation_mode_t type);
|
|
};
|
|
|
|
template <>
|
|
struct ForwardAct<float> {
|
|
ForwardActType<float>::type operator()(activation_mode_t type) {
|
|
return forward[type];
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct ForwardAct<double> {
|
|
ForwardActType<double>::type operator()(activation_mode_t type) {
|
|
return forward_d[type];
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct BackwardAct {
|
|
typename BackwardActType<T>::type operator()(activation_mode_t type);
|
|
};
|
|
|
|
template <>
|
|
struct BackwardAct<float> {
|
|
BackwardActType<float>::type operator()(activation_mode_t type) {
|
|
return backward[type];
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct BackwardAct<double> {
|
|
BackwardActType<double>::type operator()(activation_mode_t type) {
|
|
return backward_d[type];
|
|
}
|
|
};
|
|
|
|
} // namespace cpu
|
|
|
|
#ifdef __AVX__
|
|
namespace avx {
|
|
static Active<__m256>::forward forward[] = AVX_ACTIVE_FUNCTION;
|
|
static Active<__m256>::backward backward[] = AVX_ACTIVE_FUNCTION;
|
|
} // namespace avx
|
|
#endif
|
|
#endif
|
|
|
|
} // namespace hppl
|
|
|
|
#endif // HL_ACTIVATION_FUNCTIONS_H_
|