You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							94 lines
						
					
					
						
							2.7 KiB
						
					
					
				
			
		
		
	
	
							94 lines
						
					
					
						
							2.7 KiB
						
					
					
				#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
from paddle.trainer_config_helpers import *
 | 
						|
 | 
						|
height = 227
 | 
						|
width = 227
 | 
						|
num_class = 1000
 | 
						|
batch_size = get_config_arg('batch_size', int, 128)
 | 
						|
gp = get_config_arg('layer_num', int, 1)
 | 
						|
is_infer = get_config_arg("is_infer", bool, False)
 | 
						|
num_samples = get_config_arg('num_samples', int, 2560)
 | 
						|
 | 
						|
args = {
 | 
						|
    'height': height,
 | 
						|
    'width': width,
 | 
						|
    'color': True,
 | 
						|
    'num_class': num_class,
 | 
						|
    'is_infer': is_infer,
 | 
						|
    'num_samples': num_samples
 | 
						|
}
 | 
						|
define_py_data_sources2(
 | 
						|
    "train.list" if not is_infer else None,
 | 
						|
    "test.list" if is_infer else None,
 | 
						|
    module="provider",
 | 
						|
    obj="process",
 | 
						|
    args=args)
 | 
						|
 | 
						|
settings(
 | 
						|
    batch_size=batch_size,
 | 
						|
    learning_rate=0.01 / batch_size,
 | 
						|
    learning_method=MomentumOptimizer(0.9),
 | 
						|
    regularization=L2Regularization(0.0005 * batch_size))
 | 
						|
 | 
						|
# conv1
 | 
						|
net = data_layer('data', size=height * width * 3)
 | 
						|
net = img_conv_layer(
 | 
						|
    input=net,
 | 
						|
    filter_size=11,
 | 
						|
    num_channels=3,
 | 
						|
    num_filters=96,
 | 
						|
    stride=4,
 | 
						|
    padding=1)
 | 
						|
net = img_cmrnorm_layer(input=net, size=5, scale=0.0001, power=0.75)
 | 
						|
net = img_pool_layer(input=net, pool_size=3, stride=2)
 | 
						|
 | 
						|
# conv2
 | 
						|
net = img_conv_layer(
 | 
						|
    input=net, filter_size=5, num_filters=256, stride=1, padding=2, groups=gp)
 | 
						|
net = img_cmrnorm_layer(input=net, size=5, scale=0.0001, power=0.75)
 | 
						|
net = img_pool_layer(input=net, pool_size=3, stride=2)
 | 
						|
 | 
						|
# conv3
 | 
						|
net = img_conv_layer(
 | 
						|
    input=net, filter_size=3, num_filters=384, stride=1, padding=1)
 | 
						|
# conv4
 | 
						|
net = img_conv_layer(
 | 
						|
    input=net, filter_size=3, num_filters=384, stride=1, padding=1, groups=gp)
 | 
						|
 | 
						|
# conv5
 | 
						|
net = img_conv_layer(
 | 
						|
    input=net, filter_size=3, num_filters=256, stride=1, padding=1, groups=gp)
 | 
						|
net = img_pool_layer(input=net, pool_size=3, stride=2)
 | 
						|
 | 
						|
net = fc_layer(
 | 
						|
    input=net,
 | 
						|
    size=4096,
 | 
						|
    act=ReluActivation(),
 | 
						|
    layer_attr=ExtraAttr(drop_rate=0.5))
 | 
						|
net = fc_layer(
 | 
						|
    input=net,
 | 
						|
    size=4096,
 | 
						|
    act=ReluActivation(),
 | 
						|
    layer_attr=ExtraAttr(drop_rate=0.5))
 | 
						|
net = fc_layer(input=net, size=1000, act=SoftmaxActivation())
 | 
						|
 | 
						|
if is_infer:
 | 
						|
    outputs(net)
 | 
						|
else:
 | 
						|
    lab = data_layer('label', num_class)
 | 
						|
    loss = cross_entropy(input=net, label=lab)
 | 
						|
    outputs(loss)
 |