You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
220 lines
6.8 KiB
220 lines
6.8 KiB
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <atomic>
|
|
#include <deque>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include <ThreadPool.h>
|
|
|
|
#include "paddle/fluid/framework/scope.h"
|
|
#include "paddle/fluid/framework/variable.h"
|
|
#include "paddle/fluid/operators/distributed/rpc_common.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
#include "paddle/fluid/operators/math/selected_rows_functor.h"
|
|
#include "paddle/fluid/platform/device_context.h"
|
|
#include "paddle/fluid/platform/enforce.h"
|
|
#include "paddle/fluid/platform/place.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
namespace distributed {
|
|
|
|
using Scope = framework::Scope;
|
|
using Variable = framework::Variable;
|
|
|
|
template <typename T>
|
|
class BlockingQueue {
|
|
public:
|
|
explicit BlockingQueue(size_t capacity) : capacity_(capacity) {
|
|
PADDLE_ENFORCE_GT(capacity_, 0, "The capacity must be greater than 0.");
|
|
}
|
|
|
|
bool Push(const T& elem) {
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
cv_.wait(lock, [&] { return queue_.size() < capacity_; });
|
|
PADDLE_ENFORCE_LT(queue_.size(), capacity_);
|
|
queue_.push_back(elem);
|
|
}
|
|
cv_.notify_one();
|
|
return true;
|
|
}
|
|
|
|
bool Push(T&& elem) {
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
cv_.wait(lock, [&] { return queue_.size() < capacity_; });
|
|
PADDLE_ENFORCE_LT(queue_.size(), capacity_);
|
|
queue_.emplace_back(std::move(elem));
|
|
}
|
|
cv_.notify_one();
|
|
return true;
|
|
}
|
|
|
|
T Pop() {
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
cv_.wait(lock, [=] { return !queue_.empty(); });
|
|
T rc(std::move(queue_.front()));
|
|
queue_.pop_front();
|
|
cv_.notify_one();
|
|
return rc;
|
|
}
|
|
|
|
size_t Cap() const {
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
return capacity_;
|
|
}
|
|
|
|
size_t Size() const {
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
return queue_.size();
|
|
}
|
|
|
|
private:
|
|
const size_t capacity_;
|
|
std::deque<T> queue_;
|
|
|
|
mutable std::mutex mutex_;
|
|
std::condition_variable cv_;
|
|
};
|
|
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
|
|
|
inline void MergeVars(const std::string& var_name,
|
|
const std::vector<std::shared_ptr<Variable>>& vars,
|
|
Scope* scope) {
|
|
PADDLE_ENFORCE(!vars.empty(), "should have value to merge!");
|
|
auto cpu_place = platform::CPUPlace();
|
|
auto& var0 = vars[0];
|
|
auto* out_var = scope->Var(var_name);
|
|
if (var0->IsType<framework::LoDTensor>()) {
|
|
auto dims = var0->Get<framework::LoDTensor>().dims();
|
|
VLOG(3) << "merge " << var_name << " LoDTensor dims " << dims;
|
|
|
|
// init output tensor
|
|
auto* out_t = out_var->GetMutable<framework::LoDTensor>();
|
|
out_t->mutable_data<float>(dims, cpu_place);
|
|
|
|
// check the input dims
|
|
for (auto& var : vars) {
|
|
auto& var_t = var->Get<framework::LoDTensor>();
|
|
PADDLE_ENFORCE_EQ(var_t.dims(), dims, "should have the same dims");
|
|
}
|
|
|
|
// set output tensor to 0.
|
|
auto cpu_ctx = paddle::platform::CPUDeviceContext();
|
|
math::SetConstant<paddle::platform::CPUDeviceContext, float>
|
|
constant_functor;
|
|
constant_functor(cpu_ctx, out_t, static_cast<float>(0));
|
|
|
|
// sum all vars to out
|
|
auto result = EigenVector<float>::Flatten(*out_t);
|
|
for (auto& var : vars) {
|
|
auto& in_t = var->Get<framework::LoDTensor>();
|
|
auto in = EigenVector<float>::Flatten(in_t);
|
|
result.device(*cpu_ctx.eigen_device()) = result + in;
|
|
}
|
|
} else if (var0->IsType<framework::SelectedRows>()) {
|
|
auto& slr0 = var0->Get<framework::SelectedRows>();
|
|
auto* out_slr = out_var->GetMutable<framework::SelectedRows>();
|
|
out_slr->mutable_rows()->clear();
|
|
out_slr->mutable_value()->mutable_data<float>({{}}, cpu_place);
|
|
std::vector<const paddle::framework::SelectedRows*> inputs;
|
|
inputs.reserve(vars.size());
|
|
for (auto& var : vars) {
|
|
inputs.push_back(&var->Get<framework::SelectedRows>());
|
|
}
|
|
math::scatter::MergeAdd<paddle::platform::CPUDeviceContext, float>
|
|
merge_add;
|
|
auto dev_ctx = paddle::platform::CPUDeviceContext();
|
|
merge_add(dev_ctx, inputs, out_slr, false);
|
|
VLOG(3) << "merge " << var_name << " SelectedRows height: " << slr0.height()
|
|
<< " dims: " << slr0.value().dims();
|
|
} else {
|
|
PADDLE_THROW("unsupported var type!");
|
|
}
|
|
}
|
|
|
|
using RpcCtxMap = std::unordered_map<std::string, RpcContext>;
|
|
|
|
class Communicator {
|
|
public:
|
|
Communicator(const RpcCtxMap& send_varname_to_ctx,
|
|
const RpcCtxMap& recv_varname_to_ctx, Scope* recv_scope);
|
|
|
|
~Communicator();
|
|
|
|
void Start();
|
|
|
|
// send grad
|
|
void Send(const std::string& var_name, const framework::Scope& scope);
|
|
|
|
private:
|
|
// recv all parameter
|
|
void RecvAll();
|
|
void SendThread();
|
|
void RecvThread();
|
|
|
|
bool running_ = false;
|
|
std::unordered_map<std::string,
|
|
std::shared_ptr<BlockingQueue<std::shared_ptr<Variable>>>>
|
|
send_varname_to_queue_;
|
|
RpcCtxMap send_varname_to_ctx_;
|
|
RpcCtxMap recv_varname_to_ctx_;
|
|
std::unique_ptr<std::thread> send_thread_;
|
|
std::unique_ptr<std::thread> recv_thread_;
|
|
Scope* recv_scope_; // should be global scope
|
|
std::unique_ptr<Scope> send_scope_; // an independent scope
|
|
std::unique_ptr<::ThreadPool> send_threadpool_{nullptr};
|
|
std::unique_ptr<::ThreadPool> recv_threadpool_{nullptr};
|
|
std::atomic_uint grad_num_{0}; // the num of gradient sent since last recv
|
|
|
|
// the following code is for initialize the commnunicator
|
|
public:
|
|
static void Init(const RpcCtxMap& send_varname_to_ctx,
|
|
const RpcCtxMap& recv_varname_to_ctx, Scope* recv_scope) {
|
|
InitImpl(send_varname_to_ctx, recv_varname_to_ctx, recv_scope);
|
|
}
|
|
|
|
static Communicator* GetInstance();
|
|
|
|
private:
|
|
// Init is called by GetInstance.
|
|
static void InitImpl(const RpcCtxMap& send_varname_to_ctx,
|
|
const RpcCtxMap& recv_varname_to_ctx,
|
|
Scope* recv_scope) {
|
|
if (communicator_ == nullptr) {
|
|
communicator_.reset(new Communicator(send_varname_to_ctx,
|
|
recv_varname_to_ctx, recv_scope));
|
|
}
|
|
}
|
|
|
|
private:
|
|
static std::once_flag init_flag_;
|
|
static std::unique_ptr<Communicator> communicator_;
|
|
};
|
|
|
|
} // namespace distributed
|
|
} // namespace operators
|
|
} // namespace paddle
|