You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
162 lines
5.7 KiB
162 lines
5.7 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
Indicesou may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <algorithm>
|
|
#include "cub/cub.cuh"
|
|
#include "paddle/fluid/operators/norm_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
__device__ __forceinline__ float square_root(float x) { return sqrtf(x); }
|
|
|
|
__device__ __forceinline__ double square_root(double x) { return sqrt(x); }
|
|
|
|
template <typename T, int BlockDim>
|
|
__global__ void Normalize(const T* x, const int pre,
|
|
const int axis_n, // dim in axis
|
|
const int post, const T eps, T* y, T* out_norm) {
|
|
typedef cub::BlockReduce<T, BlockDim> BlockReduce;
|
|
__shared__ typename BlockReduce::TempStorage temp_storage;
|
|
int num = pre * post;
|
|
for (int i = blockIdx.x; i < num; i += gridDim.x) {
|
|
int base = (i / post) * post * axis_n + (i % post);
|
|
|
|
T sum = 0.0;
|
|
__shared__ T norm;
|
|
for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
|
|
const T x_ij = x[base + j * post];
|
|
sum += x_ij * x_ij;
|
|
}
|
|
T reduce_result = BlockReduce(temp_storage).Sum(sum);
|
|
|
|
if (threadIdx.x == 0) {
|
|
norm = square_root(reduce_result + eps);
|
|
out_norm[i] = norm;
|
|
}
|
|
__syncthreads();
|
|
for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
|
|
const int index = base + j * post;
|
|
y[index] = x[index] / norm;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class NormCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* in_x = ctx.Input<framework::Tensor>("X");
|
|
auto* out_y = ctx.Output<framework::Tensor>("Out");
|
|
auto* out_norm = ctx.Output<framework::Tensor>("Norm");
|
|
const T* x = in_x->data<T>();
|
|
T* y = out_y->mutable_data<T>(ctx.GetPlace());
|
|
T* norm = out_norm->mutable_data<T>(ctx.GetPlace());
|
|
|
|
auto xdim = in_x->dims();
|
|
auto ndim = out_norm->dims();
|
|
int axis = ctx.Attr<int>("axis");
|
|
T eps = static_cast<T>(ctx.Attr<float>("epsilon"));
|
|
if (axis < 0) axis = xdim.size() + axis;
|
|
int pre, n, post;
|
|
GetDims(xdim, axis, &pre, &n, &post);
|
|
|
|
auto& dev_ctx = ctx.cuda_device_context();
|
|
|
|
const int block = 512;
|
|
int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
|
|
const int max_blocks = std::max(max_threads / block, 1);
|
|
int grid = std::min(max_blocks, pre * post);
|
|
Normalize<T, block><<<grid, block, 0, dev_ctx.stream()>>>(x, pre, n, post,
|
|
eps, y, norm);
|
|
}
|
|
};
|
|
|
|
template <typename T, int BlockDim>
|
|
__global__ void NormalizeGradient(const T* x, const T* x_norm, const T* y_grad,
|
|
const int pre, const int axis_n,
|
|
const int post, T* x_grad) {
|
|
typedef cub::BlockReduce<T, BlockDim> BlockReduce;
|
|
__shared__ typename BlockReduce::TempStorage temp_storage_sum;
|
|
int num = pre * post;
|
|
for (int i = blockIdx.x; i < num; i += gridDim.x) {
|
|
T sum = 0.0;
|
|
__shared__ T row_sum;
|
|
__shared__ T row_sqrt_norm;
|
|
__shared__ T row_norm;
|
|
|
|
auto base = (i / post) * post * axis_n + (i % post);
|
|
|
|
for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
|
|
int index = base + j * post;
|
|
sum += x[index] * y_grad[index];
|
|
}
|
|
T reduce_result = BlockReduce(temp_storage_sum).Sum(sum);
|
|
|
|
if (threadIdx.x == 0) {
|
|
row_sum = reduce_result;
|
|
row_sqrt_norm = x_norm[i];
|
|
row_norm = row_sqrt_norm * row_sqrt_norm;
|
|
}
|
|
__syncthreads();
|
|
for (int j = threadIdx.x; j < axis_n; j += blockDim.x) {
|
|
int index = base + j * post;
|
|
const T x_ij = x[index];
|
|
const T dy_ij = y_grad[index];
|
|
x_grad[index] = (dy_ij - x_ij * row_sum / row_norm) / row_sqrt_norm;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename DeviceContext, typename T, typename AttrType = T>
|
|
class NormGradCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* in_x = ctx.Input<framework::Tensor>("X");
|
|
auto* in_norm = ctx.Input<framework::Tensor>("Norm");
|
|
auto* in_dy = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
|
auto* out_dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
|
|
T* dx = out_dx->mutable_data<T>(ctx.GetPlace());
|
|
const T* x = in_x->data<T>();
|
|
const T* x_norm = in_norm->data<T>();
|
|
const T* dy = in_dy->data<T>();
|
|
|
|
auto xdim = in_x->dims();
|
|
int axis = ctx.Attr<int>("axis");
|
|
if (axis < 0) axis = xdim.size() + axis;
|
|
int pre, n, post;
|
|
GetDims(xdim, axis, &pre, &n, &post);
|
|
|
|
auto& dev_ctx = ctx.cuda_device_context();
|
|
|
|
const int block = 512;
|
|
int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
|
|
const int max_blocks = std::max(max_threads / block, 1);
|
|
int grid = std::min(max_blocks, pre * post);
|
|
NormalizeGradient<T, block><<<grid, block, 0, dev_ctx.stream()>>>(
|
|
x, x_norm, dy, pre, n, post, dx);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
using CUDA = paddle::platform::CUDADeviceContext;
|
|
|
|
REGISTER_OP_CUDA_KERNEL(norm, ops::NormCUDAKernel<CUDA, float>,
|
|
ops::NormCUDAKernel<CUDA, double>);
|
|
REGISTER_OP_CUDA_KERNEL(norm_grad, ops::NormGradCUDAKernel<CUDA, float>,
|
|
ops::NormGradCUDAKernel<CUDA, double>);
|