You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
321 lines
12 KiB
321 lines
12 KiB
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
|
|
#
|
|
# licensed under the apache license, version 2.0 (the "license");
|
|
# you may not use this file except in compliance with the license.
|
|
# you may obtain a copy of the license at
|
|
#
|
|
# http://www.apache.org/licenses/license-2.0
|
|
#
|
|
# unless required by applicable law or agreed to in writing, software
|
|
# distributed under the license is distributed on an "as is" basis,
|
|
# without warranties or conditions of any kind, either express or implied.
|
|
# see the license for the specific language governing permissions and
|
|
# limitations under the license.
|
|
import unittest
|
|
import os
|
|
import numpy as np
|
|
import time
|
|
import sys
|
|
import random
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import functools
|
|
import contextlib
|
|
from paddle.dataset.common import download
|
|
from PIL import Image, ImageEnhance
|
|
import math
|
|
import paddle.fluid.contrib.int8_inference.utility as int8_utility
|
|
|
|
random.seed(0)
|
|
np.random.seed(0)
|
|
|
|
DATA_DIM = 224
|
|
|
|
THREAD = 1
|
|
BUF_SIZE = 102400
|
|
|
|
DATA_DIR = 'data/ILSVRC2012'
|
|
|
|
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
|
|
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
|
|
|
|
|
|
# TODO(guomingz): Remove duplicated code from resize_short, crop_image, process_image, _reader_creator
|
|
def resize_short(img, target_size):
|
|
percent = float(target_size) / min(img.size[0], img.size[1])
|
|
resized_width = int(round(img.size[0] * percent))
|
|
resized_height = int(round(img.size[1] * percent))
|
|
img = img.resize((resized_width, resized_height), Image.LANCZOS)
|
|
return img
|
|
|
|
|
|
def crop_image(img, target_size, center):
|
|
width, height = img.size
|
|
size = target_size
|
|
if center == True:
|
|
w_start = (width - size) / 2
|
|
h_start = (height - size) / 2
|
|
else:
|
|
w_start = np.random.randint(0, width - size + 1)
|
|
h_start = np.random.randint(0, height - size + 1)
|
|
w_end = w_start + size
|
|
h_end = h_start + size
|
|
img = img.crop((w_start, h_start, w_end, h_end))
|
|
return img
|
|
|
|
|
|
def process_image(sample, mode, color_jitter, rotate):
|
|
img_path = sample[0]
|
|
|
|
img = Image.open(img_path)
|
|
|
|
img = resize_short(img, target_size=256)
|
|
img = crop_image(img, target_size=DATA_DIM, center=True)
|
|
|
|
if img.mode != 'RGB':
|
|
img = img.convert('RGB')
|
|
|
|
img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255
|
|
img -= img_mean
|
|
img /= img_std
|
|
|
|
return img, sample[1]
|
|
|
|
|
|
def _reader_creator(file_list,
|
|
mode,
|
|
shuffle=False,
|
|
color_jitter=False,
|
|
rotate=False,
|
|
data_dir=DATA_DIR):
|
|
def reader():
|
|
with open(file_list) as flist:
|
|
full_lines = [line.strip() for line in flist]
|
|
if shuffle:
|
|
np.random.shuffle(full_lines)
|
|
|
|
lines = full_lines
|
|
|
|
for line in lines:
|
|
img_path, label = line.split()
|
|
img_path = os.path.join(data_dir, img_path)
|
|
if not os.path.exists(img_path):
|
|
continue
|
|
yield img_path, int(label)
|
|
|
|
mapper = functools.partial(
|
|
process_image, mode=mode, color_jitter=color_jitter, rotate=rotate)
|
|
|
|
return paddle.reader.xmap_readers(mapper, reader, THREAD, BUF_SIZE)
|
|
|
|
|
|
def val(data_dir=DATA_DIR):
|
|
file_list = os.path.join(data_dir, 'val_list.txt')
|
|
return _reader_creator(file_list, 'val', shuffle=False, data_dir=data_dir)
|
|
|
|
|
|
class TestCalibrationForResnet50(unittest.TestCase):
|
|
def setUp(self):
|
|
self.int8_download = 'int8/download'
|
|
self.cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' +
|
|
self.int8_download)
|
|
|
|
data_urls = []
|
|
data_md5s = []
|
|
self.data_cache_folder = ''
|
|
if os.environ.get('DATASET') == 'full':
|
|
data_urls.append(
|
|
'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partaa'
|
|
)
|
|
data_md5s.append('60f6525b0e1d127f345641d75d41f0a8')
|
|
data_urls.append(
|
|
'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partab'
|
|
)
|
|
data_md5s.append('1e9f15f64e015e58d6f9ec3210ed18b5')
|
|
self.data_cache_folder = self.download_data(data_urls, data_md5s,
|
|
"full_data", False)
|
|
else:
|
|
data_urls.append(
|
|
'http://paddle-inference-dist.bj.bcebos.com/int8/calibration_test_data.tar.gz'
|
|
)
|
|
data_md5s.append('1b6c1c434172cca1bf9ba1e4d7a3157d')
|
|
self.data_cache_folder = self.download_data(data_urls, data_md5s,
|
|
"small_data", False)
|
|
|
|
# reader/decorator.py requires the relative path to the data folder
|
|
cmd = 'rm -rf {0} && ln -s {1} {0}'.format("data",
|
|
self.data_cache_folder)
|
|
os.system(cmd)
|
|
|
|
self.batch_size = 1
|
|
self.sample_iterations = 50
|
|
self.infer_iterations = 50000 if os.environ.get(
|
|
'DATASET') == 'full' else 50
|
|
|
|
def cache_unzipping(self, target_folder, zip_path):
|
|
if not os.path.exists(target_folder):
|
|
cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder,
|
|
zip_path)
|
|
os.system(cmd)
|
|
|
|
def download_data(self, data_urls, data_md5s, folder_name, is_model=True):
|
|
data_cache_folder = os.path.join(self.cache_folder, folder_name)
|
|
zip_path = ''
|
|
if os.environ.get('DATASET') == 'full':
|
|
file_names = []
|
|
for i in range(0, len(data_urls)):
|
|
download(data_urls[i], self.int8_download, data_md5s[i])
|
|
file_names.append(data_urls[i].split('/')[-1])
|
|
|
|
zip_path = os.path.join(self.cache_folder,
|
|
'full_imagenet_val.tar.gz')
|
|
if not os.path.exists(zip_path):
|
|
cat_command = 'cat'
|
|
for file_name in file_names:
|
|
cat_command += ' ' + os.path.join(self.cache_folder,
|
|
file_name)
|
|
cat_command += ' > ' + zip_path
|
|
os.system(cat_command)
|
|
|
|
if os.environ.get('DATASET') != 'full' or is_model:
|
|
download(data_urls[0], self.int8_download, data_md5s[0])
|
|
file_name = data_urls[0].split('/')[-1]
|
|
zip_path = os.path.join(self.cache_folder, file_name)
|
|
|
|
print('Data is downloaded at {0}').format(zip_path)
|
|
self.cache_unzipping(data_cache_folder, zip_path)
|
|
return data_cache_folder
|
|
|
|
def download_model(self):
|
|
# resnet50 fp32 data
|
|
data_urls = [
|
|
'http://paddle-inference-dist.bj.bcebos.com/int8/resnet50_int8_model.tar.gz'
|
|
]
|
|
data_md5s = ['4a5194524823d9b76da6e738e1367881']
|
|
self.model_cache_folder = self.download_data(data_urls, data_md5s,
|
|
"resnet50_fp32")
|
|
self.model = "ResNet-50"
|
|
self.algo = "direct"
|
|
|
|
def run_program(self, model_path, generate_int8=False, algo='direct'):
|
|
image_shape = [3, 224, 224]
|
|
|
|
fluid.memory_optimize(fluid.default_main_program())
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
|
|
[infer_program, feed_dict,
|
|
fetch_targets] = fluid.io.load_inference_model(model_path, exe)
|
|
|
|
t = fluid.transpiler.InferenceTranspiler()
|
|
t.transpile(infer_program, fluid.CPUPlace())
|
|
|
|
val_reader = paddle.batch(val(), self.batch_size)
|
|
iterations = self.infer_iterations
|
|
|
|
if generate_int8:
|
|
int8_model = os.path.join(os.getcwd(), "calibration_out")
|
|
iterations = self.sample_iterations
|
|
|
|
if os.path.exists(int8_model):
|
|
os.system("rm -rf " + int8_model)
|
|
os.system("mkdir " + int8_model)
|
|
|
|
calibrator = int8_utility.Calibrator(
|
|
program=infer_program,
|
|
pretrained_model=model_path,
|
|
algo=algo,
|
|
exe=exe,
|
|
output=int8_model,
|
|
feed_var_names=feed_dict,
|
|
fetch_list=fetch_targets)
|
|
|
|
test_info = []
|
|
cnt = 0
|
|
periods = []
|
|
for batch_id, data in enumerate(val_reader()):
|
|
image = np.array(
|
|
[x[0].reshape(image_shape) for x in data]).astype("float32")
|
|
label = np.array([x[1] for x in data]).astype("int64")
|
|
label = label.reshape([-1, 1])
|
|
running_program = calibrator.sampling_program.clone(
|
|
) if generate_int8 else infer_program.clone()
|
|
|
|
t1 = time.time()
|
|
_, acc1, _ = exe.run(
|
|
running_program,
|
|
feed={feed_dict[0]: image,
|
|
feed_dict[1]: label},
|
|
fetch_list=fetch_targets)
|
|
t2 = time.time()
|
|
period = t2 - t1
|
|
periods.append(period)
|
|
|
|
if generate_int8:
|
|
calibrator.sample_data()
|
|
|
|
test_info.append(np.mean(acc1) * len(data))
|
|
cnt += len(data)
|
|
|
|
if (batch_id + 1) % 100 == 0:
|
|
print("{0} images,".format(batch_id + 1))
|
|
sys.stdout.flush()
|
|
|
|
if (batch_id + 1) == iterations:
|
|
break
|
|
|
|
if generate_int8:
|
|
calibrator.save_int8_model()
|
|
|
|
print(
|
|
"Calibration is done and the corresponding files are generated at {}".
|
|
format(os.path.abspath("calibration_out")))
|
|
else:
|
|
throughput = cnt / np.sum(periods)
|
|
latency = np.average(periods)
|
|
acc1 = np.sum(test_info) / cnt
|
|
return (throughput, latency, acc1)
|
|
|
|
def test_calibration(self):
|
|
self.download_model()
|
|
print("Start FP32 inference for {0} on {1} images ...").format(
|
|
self.model, self.infer_iterations)
|
|
(fp32_throughput, fp32_latency,
|
|
fp32_acc1) = self.run_program(self.model_cache_folder + "/model")
|
|
print("Start INT8 calibration for {0} on {1} images ...").format(
|
|
self.model, self.sample_iterations)
|
|
self.run_program(
|
|
self.model_cache_folder + "/model", True, algo=self.algo)
|
|
print("Start INT8 inference for {0} on {1} images ...").format(
|
|
self.model, self.infer_iterations)
|
|
(int8_throughput, int8_latency,
|
|
int8_acc1) = self.run_program("calibration_out")
|
|
delta_value = fp32_acc1 - int8_acc1
|
|
self.assertLess(delta_value, 0.01)
|
|
print(
|
|
"FP32 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}".
|
|
format(self.model, self.batch_size, fp32_throughput, fp32_latency,
|
|
fp32_acc1))
|
|
print(
|
|
"INT8 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}".
|
|
format(self.model, self.batch_size, int8_throughput, int8_latency,
|
|
int8_acc1))
|
|
sys.stdout.flush()
|
|
|
|
|
|
class TestCalibrationForMobilenetv1(TestCalibrationForResnet50):
|
|
def download_model(self):
|
|
# mobilenetv1 fp32 data
|
|
data_urls = [
|
|
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
|
|
]
|
|
data_md5s = ['13892b0716d26443a8cdea15b3c6438b']
|
|
self.model_cache_folder = self.download_data(data_urls, data_md5s,
|
|
"mobilenetv1_fp32")
|
|
self.model = "MobileNet-V1"
|
|
self.algo = "KL"
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|