You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_fuse_optimizer_pass.py

136 lines
4.9 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from parallel_executor_test_base import TestParallelExecutorBase
import paddle.fluid as fluid
import paddle.fluid.core as core
import numpy as np
import paddle
import paddle.dataset.mnist as mnist
import unittest
import os
def simple_fc_net(use_feed):
img = fluid.layers.data(name='image', shape=[784], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
hidden = img
for _ in range(4):
hidden = fluid.layers.fc(
hidden,
size=200,
act='relu',
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=1.0)))
prediction = fluid.layers.fc(hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.mean(loss)
return loss
def fc_with_batchnorm(use_feed):
img = fluid.layers.data(name='image', shape=[784], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
hidden = img
for _ in range(2):
hidden = fluid.layers.fc(
hidden,
size=200,
act='relu',
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=1.0)))
hidden = fluid.layers.batch_norm(input=hidden)
prediction = fluid.layers.fc(hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.mean(loss)
return loss
class TestFuseAdamOps(TestParallelExecutorBase):
@classmethod
def setUpClass(cls):
os.environ['CPU_NUM'] = str(4)
def _init_data(self, random=True):
np.random.seed(5)
if random:
img = np.random.random(size=[32, 784]).astype(np.float32)
else:
img = np.ones(shape=[32, 784], dtype='float32')
label = np.ones(shape=[32, 1], dtype='int64')
return img, label
def _compare_fused_optimizer_ops(self,
model,
use_cuda,
random_data=True,
optimizer=fluid.optimizer.Adam):
if use_cuda and not core.is_compiled_with_cuda():
return
img, label = self._init_data(random_data)
not_fuse_op_first_loss, not_fuse_op_last_loss = self.check_network_convergence(
model,
feed_dict={"image": img,
"label": label},
use_cuda=use_cuda,
fuse_all_optimizer_ops=False,
memory_opt=False, # avoid the gradient's name changed in Python side.
optimizer=optimizer)
fuse_op_first_loss, fuse_op_last_loss = self.check_network_convergence(
model,
feed_dict={"image": img,
"label": label},
use_cuda=use_cuda,
fuse_all_optimizer_ops=True,
memory_opt=False, # avoid the gradient's name changed in Python side.
optimizer=optimizer)
for loss in zip(not_fuse_op_first_loss, fuse_op_first_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
for loss in zip(not_fuse_op_last_loss, fuse_op_last_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
def test_simple_fc_with_fuse_op(self):
self._compare_fused_optimizer_ops(simple_fc_net, True)
self._compare_fused_optimizer_ops(simple_fc_net, False)
def test_batchnorm_fc_with_fuse_op(self):
self._compare_fused_optimizer_ops(fc_with_batchnorm, True)
# self._compare_fused_optimizer_ops(fc_with_batchnorm, False)
class TestFuseSGDOps(TestFuseAdamOps):
def sgd_optimizer(self, learning_rate=1e-4):
return fluid.optimizer.SGD(learning_rate=learning_rate)
def test_simple_fc_with_fuse_op(self):
self._compare_fused_optimizer_ops(
simple_fc_net, True, optimizer=self.sgd_optimizer)
self._compare_fused_optimizer_ops(
simple_fc_net, False, optimizer=self.sgd_optimizer)
def test_batchnorm_fc_with_fuse_op(self):
self._compare_fused_optimizer_ops(
fc_with_batchnorm, True, optimizer=self.sgd_optimizer)
self._compare_fused_optimizer_ops(
fc_with_batchnorm, False, optimizer=self.sgd_optimizer)
if __name__ == '__main__':
unittest.main()