You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
166 lines
5.2 KiB
166 lines
5.2 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#ifndef PADDLE_ONLY_CPU
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "paddle/math/Matrix.h"
|
|
#include "paddle/math/SparseMatrix.h"
|
|
#include "paddle/testing/TestUtil.h"
|
|
#include "paddle/utils/Stat.h"
|
|
#include "paddle/utils/Util.h"
|
|
|
|
using namespace paddle; // NOLINT
|
|
using namespace std; // NOLINT
|
|
|
|
void MatrixCheckErr(const Matrix& matrix1, const Matrix& matrix2) {
|
|
CHECK(matrix1.getHeight() == matrix2.getHeight());
|
|
CHECK(matrix1.getWidth() == matrix2.getWidth());
|
|
#ifndef PADDLE_TYPE_DOUBLE
|
|
real err = 1e-3;
|
|
#else
|
|
real err = 1e-10;
|
|
#endif
|
|
|
|
int height = matrix1.getHeight();
|
|
int width = matrix1.getWidth();
|
|
const real* data1 = matrix1.getData();
|
|
const real* data2 = matrix2.getData();
|
|
int count = 0;
|
|
for (int i = 0; i < height; i++) {
|
|
for (int j = 0; j < width; j++) {
|
|
real a = data1[i * width + j];
|
|
real b = data2[i * width + j];
|
|
if (fabs(a - b) > err) {
|
|
if ((fabsf(a - b) / fabsf(a)) > (err / 10.0f)) {
|
|
count++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
EXPECT_EQ(count, 0) << "There are " << count << " different element.";
|
|
}
|
|
|
|
void testBilinearFwdBwd(int numSamples,
|
|
int imgSizeH,
|
|
int imgSizeW,
|
|
int channels) {
|
|
int inWidth = imgSizeH * imgSizeW * channels;
|
|
int outWidth = 2 * imgSizeH * 2 * imgSizeW * channels;
|
|
real ratioH = 0.5;
|
|
real ratioW = 0.5;
|
|
|
|
// forward
|
|
MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
|
|
MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true);
|
|
|
|
MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false);
|
|
MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true);
|
|
MatrixPtr targetCheck = CpuMatrix::create(numSamples, outWidth, false, false);
|
|
|
|
input->randomizeUniform();
|
|
inputGpu->copyFrom(*input);
|
|
|
|
{
|
|
// nvprof: GPU Proflier
|
|
REGISTER_GPU_PROFILER("testBilinearFwdBwd");
|
|
target->bilinearForward(*input,
|
|
imgSizeH,
|
|
imgSizeW,
|
|
2 * imgSizeH,
|
|
2 * imgSizeW,
|
|
channels,
|
|
ratioH,
|
|
ratioW);
|
|
targetGpu->bilinearForward(*inputGpu,
|
|
imgSizeH,
|
|
imgSizeW,
|
|
2 * imgSizeH,
|
|
2 * imgSizeW,
|
|
channels,
|
|
ratioH,
|
|
ratioW);
|
|
}
|
|
|
|
// check
|
|
targetCheck->copyFrom(*targetGpu);
|
|
MatrixCheckErr(*target, *targetCheck);
|
|
|
|
// backward
|
|
MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false);
|
|
MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true);
|
|
|
|
MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false);
|
|
MatrixPtr targetGpuGrad =
|
|
GpuMatrix::create(numSamples, outWidth, false, true);
|
|
MatrixPtr targetCheckGrad =
|
|
CpuMatrix::create(numSamples, inWidth, false, false);
|
|
|
|
inputGrad->randomizeUniform();
|
|
targetGrad->randomizeUniform();
|
|
inputGpuGrad->copyFrom(*inputGrad);
|
|
targetGpuGrad->copyFrom(*targetGrad);
|
|
|
|
inputGrad->bilinearBackward(*targetGrad,
|
|
2 * imgSizeH,
|
|
2 * imgSizeW,
|
|
imgSizeH,
|
|
imgSizeW,
|
|
channels,
|
|
ratioH,
|
|
ratioW);
|
|
inputGpuGrad->bilinearBackward(*targetGpuGrad,
|
|
2 * imgSizeH,
|
|
2 * imgSizeW,
|
|
imgSizeH,
|
|
imgSizeW,
|
|
channels,
|
|
ratioH,
|
|
ratioW);
|
|
|
|
// check
|
|
targetCheckGrad->copyFrom(*inputGpuGrad);
|
|
MatrixCheckErr(*inputGrad, *targetCheckGrad);
|
|
}
|
|
|
|
TEST(Profiler, testBilinearFwdBwd) {
|
|
auto numSamples = 10;
|
|
auto channels = 16;
|
|
auto imgSize = 64;
|
|
{
|
|
// nvprof: GPU Proflier
|
|
REGISTER_GPU_PROFILER("testBilinearFwdBwd");
|
|
// Paddle built-in timer
|
|
REGISTER_TIMER_INFO(
|
|
"testBilinearFwdBwd",
|
|
"numSamples = 10, channels = 16, imgSizeX = 64, imgSizeY = 64");
|
|
testBilinearFwdBwd(numSamples, imgSize, imgSize, channels);
|
|
}
|
|
globalStat.printAllStatus();
|
|
}
|
|
|
|
int main(int argc, char** argv) {
|
|
testing::InitGoogleTest(&argc, argv);
|
|
initMain(argc, argv);
|
|
|
|
// nvprof: GPU Proflier
|
|
REGISTER_GPU_PROFILER(
|
|
"RecursiveProfilingTest",
|
|
"numSamples = 10, channels = 16, imgSizeX = 64, imgSizeY = 64");
|
|
|
|
return RUN_ALL_TESTS();
|
|
}
|
|
|
|
#endif /* PADDLE_ONLY_CPU */
|