You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
4.9 KiB
174 lines
4.9 KiB
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "MkldnnFcLayer.h"
|
|
#include "paddle/utils/Logging.h"
|
|
#include "paddle/utils/Stat.h"
|
|
|
|
namespace paddle {
|
|
|
|
REGISTER_LAYER(mkldnn_fc, MkldnnFcLayer);
|
|
|
|
bool MkldnnFcLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
if (!MkldnnLayer::init(layerMap, parameterMap)) {
|
|
return false;
|
|
}
|
|
|
|
CHECK_EQ(inputLayers_.size(), 1) << "Only support one input layer yet!";
|
|
CHECK_EQ(inputLayers_.size(), parameters_.size());
|
|
CHECK(!parameters_[0]->isSparse()) << "Do not support sparse yet";
|
|
|
|
// output size, cat not be changed
|
|
oc_ = getSize();
|
|
oh_ = 1;
|
|
ow_ = 1;
|
|
|
|
// input size can not change in FC
|
|
iLayerSize_ = inputLayers_[0]->getSize();
|
|
CHECK_EQ(parameters_[0]->getSize(), iLayerSize_ * oc_);
|
|
|
|
// create weight
|
|
weight_ =
|
|
std::unique_ptr<Weight>(new Weight(oc_, iLayerSize_, parameters_[0], 0));
|
|
|
|
// create biases
|
|
if (biasParameter_.get() != NULL) {
|
|
biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void MkldnnFcLayer::cvtWgtFromPaddle() {
|
|
if (FLAGS_use_mkldnn_wgt) {
|
|
return;
|
|
}
|
|
|
|
if (hasInitedWgt_) {
|
|
return;
|
|
}
|
|
|
|
// The weight_ is transposed from initial paddle weight
|
|
MatrixPtr paddleWgt = Matrix::create(
|
|
weight_->getW()->getData(), iLayerSize_, oc_, false, false);
|
|
|
|
std::ostringstream ostr;
|
|
paddleWgt->print(ostr);
|
|
VLOG(DNN_ALL) << "Initial Weight from paddle: " << std::endl << ostr.str();
|
|
|
|
// The mkldnn weight is transposed from initial paddle matrix
|
|
MatrixPtr paddleWgtT;
|
|
paddleWgt->transpose(paddleWgtT, true);
|
|
|
|
weight_->getW()->copyFrom(*paddleWgtT);
|
|
hasInitedWgt_ = true;
|
|
}
|
|
|
|
void MkldnnFcLayer::cvtWgtToPaddle() {
|
|
MatrixPtr dnnWgt = weight_->getW();
|
|
MatrixPtr paddleWgt;
|
|
dnnWgt->transpose(paddleWgt, true);
|
|
|
|
// copy paddle weight and override on weight_
|
|
MatrixPtr dnnWgtT = Matrix::create(
|
|
dnnWgt->getData(), dnnWgt->getWidth(), dnnWgt->getHeight(), false, false);
|
|
dnnWgtT->copyFrom(*paddleWgt);
|
|
}
|
|
|
|
void MkldnnFcLayer::reshape() {
|
|
const Argument& input = getInput(0);
|
|
int batchSize = input.getBatchSize();
|
|
if (bs_ == batchSize) {
|
|
return;
|
|
}
|
|
bs_ = batchSize;
|
|
ih_ = input.getFrameHeight();
|
|
iw_ = input.getFrameWidth();
|
|
if (ih_ == 0) {
|
|
ih_ = 1;
|
|
}
|
|
if (iw_ == 0) {
|
|
iw_ = 1;
|
|
}
|
|
CHECK_EQ(iLayerSize_, inputLayers_[0]->getSize());
|
|
ic_ = iLayerSize_ / (ih_ * iw_);
|
|
CHECK_EQ(size_t(ic_ * ih_ * iw_), iLayerSize_) << "not divisible";
|
|
CHECK_EQ(size_t(oc_), getSize());
|
|
printSizeInfo();
|
|
|
|
// reset output
|
|
output_.setFrameHeight(oh_);
|
|
output_.setFrameWidth(ow_);
|
|
resetOutput(bs_, oc_);
|
|
}
|
|
|
|
void MkldnnFcLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
reshape();
|
|
|
|
{
|
|
REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str());
|
|
real* input = getInputValue(0)->getData();
|
|
real* output = getOutputValue()->getData();
|
|
real* wgt = weight_->getW()->getData();
|
|
bool hasBias = biases_ && biases_->getW();
|
|
real* bias = hasBias ? biases_->getW()->getData() : NULL;
|
|
mkldnnForwardFC(bs_, ic_, ih_, iw_, input, oc_, output, wgt, bias);
|
|
}
|
|
|
|
/* activation */ {
|
|
REGISTER_TIMER_INFO("FwActTimer", getName().c_str());
|
|
forwardActivation();
|
|
}
|
|
}
|
|
|
|
void MkldnnFcLayer::backward(const UpdateCallback& callback) {
|
|
/* Do derivation */ {
|
|
REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
|
|
backwardActivation();
|
|
}
|
|
|
|
bool hasBias = biases_ && biases_->getWGrad();
|
|
{
|
|
REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
|
|
real* inVal = getInputValue(0)->getData();
|
|
real* inGrad =
|
|
getInputGrad(0) != nullptr ? getInputGrad(0)->getData() : NULL;
|
|
real* outGrad = getOutputGrad()->getData();
|
|
real* wgtGrad = weight_->getWGrad()->getData();
|
|
real* wgtVal = weight_->getW()->getData();
|
|
real* biasGrad = hasBias ? biases_->getWGrad()->getData() : NULL;
|
|
mkldnnBackwardFC(bs_,
|
|
ic_,
|
|
ih_,
|
|
iw_,
|
|
inGrad,
|
|
inVal,
|
|
oc_,
|
|
outGrad,
|
|
wgtGrad,
|
|
wgtVal,
|
|
biasGrad);
|
|
}
|
|
|
|
{
|
|
REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
|
|
weight_->getParameterPtr()->incUpdate(callback);
|
|
if (hasBias) {
|
|
biases_->getParameterPtr()->incUpdate(callback);
|
|
}
|
|
}
|
|
}
|
|
} // namespace paddle
|