You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
235 lines
7.3 KiB
235 lines
7.3 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid import compiler, Program, program_guard
|
|
import paddle
|
|
|
|
|
|
# Situation 1: shape is a list(without tensor)
|
|
class TestExpandV2OpRank1(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "expand_v2"
|
|
self.init_data()
|
|
|
|
self.inputs = {'X': np.random.random(self.ori_shape).astype("float64")}
|
|
self.attrs = {'shape': self.shape}
|
|
output = np.tile(self.inputs['X'], self.expand_times)
|
|
self.outputs = {'Out': output}
|
|
|
|
def init_data(self):
|
|
self.ori_shape = [100]
|
|
self.shape = [100]
|
|
self.expand_times = [1]
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
class TestExpandV2OpRank2_DimExpanding(TestExpandV2OpRank1):
|
|
def init_data(self):
|
|
self.ori_shape = [120]
|
|
self.shape = [2, 120]
|
|
self.expand_times = [2, 1]
|
|
|
|
|
|
class TestExpandV2OpRank2(TestExpandV2OpRank1):
|
|
def init_data(self):
|
|
self.ori_shape = [1, 140]
|
|
self.shape = [12, 140]
|
|
self.expand_times = [12, 1]
|
|
|
|
|
|
class TestExpandV2OpRank3_Corner(TestExpandV2OpRank1):
|
|
def init_data(self):
|
|
self.ori_shape = (2, 10, 5)
|
|
self.shape = (2, 10, 5)
|
|
self.expand_times = (1, 1, 1)
|
|
|
|
|
|
class TestExpandV2OpRank4(TestExpandV2OpRank1):
|
|
def init_data(self):
|
|
self.ori_shape = (2, 4, 5, 7)
|
|
self.shape = (-1, -1, -1, -1)
|
|
self.expand_times = (1, 1, 1, 1)
|
|
|
|
|
|
# Situation 2: shape is a list(with tensor)
|
|
class TestExpandV2OpRank1_tensor_attr(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "expand_v2"
|
|
self.init_data()
|
|
expand_shapes_tensor = []
|
|
for index, ele in enumerate(self.expand_shape):
|
|
expand_shapes_tensor.append(("x" + str(index), np.ones(
|
|
(1)).astype('int32') * ele))
|
|
|
|
self.inputs = {
|
|
'X': np.random.random(self.ori_shape).astype("float64"),
|
|
'expand_shapes_tensor': expand_shapes_tensor,
|
|
}
|
|
self.attrs = {"shape": self.infer_expand_shape}
|
|
output = np.tile(self.inputs['X'], self.expand_times)
|
|
self.outputs = {'Out': output}
|
|
|
|
def init_data(self):
|
|
self.ori_shape = [100]
|
|
self.expand_times = [1]
|
|
self.expand_shape = [100]
|
|
self.infer_expand_shape = [-1]
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
class TestExpandV2OpRank2_Corner_tensor_attr(TestExpandV2OpRank1_tensor_attr):
|
|
def init_data(self):
|
|
self.ori_shape = [12, 14]
|
|
self.expand_times = [1, 1]
|
|
self.expand_shape = [12, 14]
|
|
self.infer_expand_shape = [12, -1]
|
|
|
|
|
|
# Situation 3: shape is a tensor
|
|
class TestExpandV2OpRank1_tensor(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "expand_v2"
|
|
self.init_data()
|
|
|
|
self.inputs = {
|
|
'X': np.random.random(self.ori_shape).astype("float64"),
|
|
'Shape': np.array(self.expand_shape).astype("int32"),
|
|
}
|
|
self.attrs = {}
|
|
output = np.tile(self.inputs['X'], self.expand_times)
|
|
self.outputs = {'Out': output}
|
|
|
|
def init_data(self):
|
|
self.ori_shape = [100]
|
|
self.expand_times = [2, 1]
|
|
self.expand_shape = [2, 100]
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
# Situation 4: input x is Integer
|
|
class TestExpandV2OpInteger(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "expand_v2"
|
|
self.inputs = {
|
|
'X': np.random.randint(
|
|
10, size=(2, 4, 5)).astype("int32")
|
|
}
|
|
self.attrs = {'shape': [2, 4, 5]}
|
|
output = np.tile(self.inputs['X'], (1, 1, 1))
|
|
self.outputs = {'Out': output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
# Situation 5: input x is Bool
|
|
class TestExpandV2OpBoolean(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "expand_v2"
|
|
self.inputs = {'X': np.random.randint(2, size=(2, 4, 5)).astype("bool")}
|
|
self.attrs = {'shape': [2, 4, 5]}
|
|
output = np.tile(self.inputs['X'], (1, 1, 1))
|
|
self.outputs = {'Out': output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
# Situation 56: input x is Integer
|
|
class TestExpandV2OpInt64_t(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "expand_v2"
|
|
self.inputs = {
|
|
'X': np.random.randint(
|
|
10, size=(2, 4, 5)).astype("int64")
|
|
}
|
|
self.attrs = {'shape': [2, 4, 5]}
|
|
output = np.tile(self.inputs['X'], (1, 1, 1))
|
|
self.outputs = {'Out': output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestExpandV2Error(unittest.TestCase):
|
|
def test_errors(self):
|
|
with program_guard(Program(), Program()):
|
|
x1 = fluid.create_lod_tensor(
|
|
np.array([[-1]]), [[1]], fluid.CPUPlace())
|
|
shape = [2, 2]
|
|
self.assertRaises(TypeError, paddle.tensor.expand, x1, shape)
|
|
x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8")
|
|
self.assertRaises(TypeError, paddle.tensor.expand, x2, shape)
|
|
x3 = fluid.layers.data(name='x3', shape=[4], dtype="bool")
|
|
x3.stop_gradient = False
|
|
self.assertRaises(ValueError, paddle.tensor.expand, x3, shape)
|
|
|
|
|
|
# Test python API
|
|
class TestExpandV2API(unittest.TestCase):
|
|
def test_api(self):
|
|
input = np.random.random([12, 14]).astype("float32")
|
|
x = fluid.layers.data(
|
|
name='x', shape=[12, 14], append_batch_size=False, dtype="float32")
|
|
|
|
positive_2 = fluid.layers.fill_constant([1], "int32", 12)
|
|
expand_shape = fluid.layers.data(
|
|
name="expand_shape",
|
|
shape=[2],
|
|
append_batch_size=False,
|
|
dtype="int32")
|
|
|
|
out_1 = paddle.expand(x, shape=[12, 14])
|
|
out_2 = paddle.expand(x, shape=[positive_2, 14])
|
|
out_3 = paddle.expand(x, shape=expand_shape)
|
|
|
|
g0 = fluid.backward.calc_gradient(out_2, x)
|
|
|
|
exe = fluid.Executor(place=fluid.CPUPlace())
|
|
res_1, res_2, res_3 = exe.run(fluid.default_main_program(),
|
|
feed={
|
|
"x": input,
|
|
"expand_shape":
|
|
np.array([12, 14]).astype("int32")
|
|
},
|
|
fetch_list=[out_1, out_2, out_3])
|
|
assert np.array_equal(res_1, np.tile(input, (1, 1)))
|
|
assert np.array_equal(res_2, np.tile(input, (1, 1)))
|
|
assert np.array_equal(res_3, np.tile(input, (1, 1)))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|