You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
329 lines
10 KiB
329 lines
10 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/framework/lod_tensor.h"
|
|
#include "paddle/framework/data_type.h"
|
|
#include "paddle/framework/framework.pb.h"
|
|
|
|
#include "paddle/memory/memcpy.h"
|
|
#include "paddle/memory/memory.h"
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
|
|
#include <glog/logging.h>
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
|
|
std::ostream &operator<<(std::ostream &os, const LoD &lod) {
|
|
os << "{";
|
|
for (auto &v : lod) {
|
|
os << "{";
|
|
for (auto &i : v) {
|
|
os << i << ",";
|
|
}
|
|
os << "}";
|
|
}
|
|
os << "}";
|
|
|
|
return os;
|
|
}
|
|
|
|
std::ostream &operator<<(std::ostream &os, const LoDTensor &t) {
|
|
PADDLE_ENFORCE(platform::is_cpu_place(t.place()));
|
|
PADDLE_ENFORCE(t.type().hash_code() == typeid(float).hash_code());
|
|
|
|
os << "dim: " << t.dims() << "\n";
|
|
os << "lod: " << t.lod() << "\n";
|
|
|
|
// only print first ten elements
|
|
int64_t size = t.numel() < 10 ? t.numel() : 10;
|
|
for (int64_t i = 0; i < size; ++i) {
|
|
os << t.data<float>()[i] << " ";
|
|
}
|
|
|
|
return os;
|
|
}
|
|
|
|
LoD SliceLevels(const LoD &in, size_t level_begin, size_t level_end) {
|
|
LoD new_lod;
|
|
new_lod.reserve(level_end - level_begin);
|
|
for (size_t i = level_begin; i < level_end; i++) {
|
|
new_lod.emplace_back(in.at(i));
|
|
}
|
|
// transform the lowest level to absolute offset.
|
|
LoD abs_offset_lod = ToAbsOffset(in);
|
|
new_lod.back() = abs_offset_lod[level_end - 1];
|
|
return new_lod;
|
|
}
|
|
|
|
LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
|
|
size_t elem_end) {
|
|
PADDLE_ENFORCE_LT(level, in.size());
|
|
PADDLE_ENFORCE_LT(elem_end, in[level].size());
|
|
|
|
LoD res;
|
|
res.resize(in.size() - level);
|
|
// copy the first level
|
|
res[0].assign(in[level].begin() + elem_begin,
|
|
in[level].begin() + elem_end + 1);
|
|
for (size_t lvl = 1; lvl < res.size(); lvl++) {
|
|
const auto &in_level = in[level + lvl];
|
|
const auto &above_level = res[lvl - 1];
|
|
auto &out_level = res[lvl];
|
|
out_level.assign(in_level.begin() + above_level.front(),
|
|
in_level.begin() + above_level.back() + 1);
|
|
}
|
|
for (size_t lvl = 0; lvl < res.size(); lvl++) {
|
|
// to make the first offset equals 0, all the elements minus the first
|
|
// element
|
|
size_t front = res[lvl].front();
|
|
for (auto &ele : res[lvl]) {
|
|
ele -= front;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
LoD ToAbsOffset(const LoD &in) {
|
|
// the lowest level stores relative offsets
|
|
if (in.empty() || in.size() == 1) return in;
|
|
LoD result = in;
|
|
for (int level = result.size() - 2; level >= 0; level--) {
|
|
for (auto &ele : result[level]) {
|
|
ele = result[level + 1][ele];
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool operator==(const LoD &a, const LoD &b) {
|
|
if (a.size() != b.size()) {
|
|
return false;
|
|
}
|
|
|
|
for (size_t i = 0; i < a.size(); i++) {
|
|
const auto &a_level = a[i];
|
|
const auto &b_level = b[i];
|
|
if (a_level.size() != b_level.size()) {
|
|
return false;
|
|
}
|
|
for (size_t j = 0; j < a_level.size(); j++) {
|
|
if (a_level[j] != b_level[j]) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
size_t LoDTensor::NumElements(size_t level, size_t idx) const {
|
|
PADDLE_ENFORCE_LT(level, NumLevels());
|
|
PADDLE_ENFORCE_LT(idx, NumElements(level));
|
|
return lod_[level][idx + 1] - lod_[level][idx];
|
|
}
|
|
|
|
size_t LoDTensor::NumInstancesInElement(size_t level, size_t idx) const {
|
|
PADDLE_ENFORCE_LT(level, NumLevels());
|
|
PADDLE_ENFORCE_LT(idx, NumElements(level));
|
|
auto abs_lod = ToAbsOffset(lod());
|
|
size_t begin = abs_lod[level][idx];
|
|
size_t end = abs_lod[level][idx + 1];
|
|
return end - begin;
|
|
}
|
|
|
|
void LoDTensor::ShrinkLevels(size_t level_begin, size_t level_end) {
|
|
auto new_lod = framework::SliceLevels(lod_, level_begin, level_end);
|
|
lod_ = new_lod;
|
|
}
|
|
|
|
void LoDTensor::ShrinkInLevel(size_t level, size_t elem_begin,
|
|
size_t elem_end) {
|
|
PADDLE_ENFORCE_LT(level, NumLevels());
|
|
PADDLE_ENFORCE_LT(elem_begin, NumElements(level));
|
|
PADDLE_ENFORCE_LT(elem_end, NumElements(level) + 1);
|
|
|
|
auto abs_lod = framework::ToAbsOffset(lod());
|
|
auto new_lod = framework::SliceInLevel(lod_, level, elem_begin, elem_end);
|
|
lod_ = new_lod;
|
|
|
|
// slice the underlying tensor
|
|
size_t begin = abs_lod[level][elem_begin];
|
|
size_t end = abs_lod[level][elem_end];
|
|
PADDLE_ENFORCE_LT(begin, end, "Cannot shrink, the result tensor is empty.");
|
|
ShareDataWith(Slice(begin, end));
|
|
}
|
|
|
|
using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
|
|
LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx,
|
|
size_t end_idx, size_t start_level) {
|
|
LoD sub_lod;
|
|
|
|
for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) {
|
|
PADDLE_ENFORCE_LE(start_idx, end_idx);
|
|
PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size());
|
|
std::vector<size_t> level_lens;
|
|
for (size_t i = start_idx; i < end_idx; ++i) {
|
|
level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]);
|
|
}
|
|
sub_lod.emplace_back(level_lens);
|
|
start_idx = lod[level_idx][start_idx];
|
|
end_idx = lod[level_idx][end_idx];
|
|
}
|
|
|
|
return LoDAndOffset{sub_lod, {start_idx, end_idx}};
|
|
}
|
|
|
|
void AppendLoD(LoD *lod, const LoD &lod_length) {
|
|
PADDLE_ENFORCE(
|
|
lod->empty() || lod->size() == lod_length.size(),
|
|
"The lod_length should has the same size with the appended lod.");
|
|
if (lod->empty()) {
|
|
for (size_t i = 0; i < lod_length.size(); ++i) {
|
|
lod->emplace_back(1, 0); // size = 1, value = 0;
|
|
}
|
|
*lod = LoD(lod_length.size(), std::vector<size_t>({0}));
|
|
}
|
|
for (size_t i = 0; i < lod->size(); ++i) {
|
|
auto &level = (*lod)[i];
|
|
for (size_t len : lod_length[i]) {
|
|
level.push_back(level.back() + len);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SerializeToStream(std::ostream &os, const LoDTensor &tensor,
|
|
const platform::DeviceContext &dev_ctx) {
|
|
{ // the 1st field, uint32_t version for LoDTensor
|
|
constexpr uint32_t version = 0;
|
|
os.write(reinterpret_cast<const char *>(&version), sizeof(version));
|
|
}
|
|
{
|
|
// the 2st field, LoD information
|
|
// uint64_t lod_level
|
|
// uint64_t lod_level_1 size in byte.
|
|
// int* lod_level_1 data
|
|
// ...
|
|
auto lod = tensor.lod();
|
|
uint64_t size = lod.size();
|
|
os.write(reinterpret_cast<const char *>(&size), sizeof(size));
|
|
|
|
for (auto &each : lod) {
|
|
size = each.size() * sizeof(framework::LoD::value_type::value_type);
|
|
os.write(reinterpret_cast<const char *>(&size), sizeof(size));
|
|
os.write(reinterpret_cast<const char *>(each.data()),
|
|
static_cast<std::streamsize>(size));
|
|
}
|
|
}
|
|
// the 3st field, Tensor
|
|
SerializeToStream(os, static_cast<Tensor>(tensor), dev_ctx);
|
|
}
|
|
|
|
void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
|
|
const platform::DeviceContext &dev_ctx) {
|
|
{
|
|
// the 1st field, unit32_t version for LoDTensor
|
|
uint32_t version;
|
|
is.read(reinterpret_cast<char *>(&version), sizeof(version));
|
|
PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
|
|
}
|
|
{
|
|
// the 2st field, LoD information
|
|
uint64_t lod_level;
|
|
is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
|
|
auto &lod = *tensor->mutable_lod();
|
|
lod.resize(lod_level);
|
|
for (uint64_t i = 0; i < lod_level; ++i) {
|
|
uint64_t size;
|
|
is.read(reinterpret_cast<char *>(&size), sizeof(size));
|
|
std::vector<size_t> tmp(size / sizeof(size_t));
|
|
is.read(reinterpret_cast<char *>(tmp.data()),
|
|
static_cast<std::streamsize>(size));
|
|
lod[i] = tmp;
|
|
}
|
|
}
|
|
// the 3st filed, Tensor
|
|
DeserializeFromStream(is, static_cast<Tensor *>(tensor), dev_ctx);
|
|
}
|
|
|
|
std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
|
|
const std::vector<platform::Place> places) const {
|
|
check_memory_size();
|
|
// PADDLE_ENFORCE(lod().empty() || (lod().size() == 1 && lod()[0].empty())
|
|
// , "Disable parallel lod for now");
|
|
PADDLE_ENFORCE(lod().empty(), "Disable parallel lod for now");
|
|
PADDLE_ENFORCE(dims()[0] % places.size() == 0,
|
|
"Batch size should be divided by places size");
|
|
|
|
std::vector<LoDTensor> lods;
|
|
for (size_t place_idx = 0; place_idx < places.size(); ++place_idx) {
|
|
size_t begin = place_idx * dims()[0] / places.size();
|
|
size_t end = (place_idx + 1) * dims()[0] / places.size();
|
|
auto src = Slice(static_cast<int>(begin), static_cast<int>(end));
|
|
|
|
LoDTensor dst;
|
|
dst.Resize(src.dims());
|
|
auto &dst_place = places[place_idx];
|
|
auto dst_ptr = dst.mutable_data(dst_place, src.type());
|
|
|
|
// TODO(tonyyang-svail):
|
|
// change the following to framework::CopyFrom
|
|
auto src_place = src.place();
|
|
auto src_ptr = src.data<void>();
|
|
auto size = src.numel() * SizeOfType(src.type());
|
|
if (platform::is_cpu_place(src_place) &&
|
|
platform::is_cpu_place(dst_place)) {
|
|
memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr,
|
|
boost::get<platform::CPUPlace>(src_place), src_ptr, size);
|
|
} else {
|
|
PADDLE_THROW("Not Implemented");
|
|
}
|
|
|
|
lods.emplace_back(dst);
|
|
}
|
|
|
|
return lods;
|
|
}
|
|
|
|
void LoDTensor::MergeLoDTensor(
|
|
const std::vector<const LoDTensor *> &lod_tensors, platform::Place place) {
|
|
PADDLE_ENFORCE(platform::is_cpu_place(place));
|
|
PADDLE_ENFORCE(!lod_tensors.empty());
|
|
|
|
framework::DDim new_dim = lod_tensors[0]->dims();
|
|
std::type_index new_type = lod_tensors[0]->type();
|
|
for (auto *lod : lod_tensors) {
|
|
PADDLE_ENFORCE(new_dim == lod->dims());
|
|
PADDLE_ENFORCE(new_type == lod->type());
|
|
PADDLE_ENFORCE(platform::is_cpu_place(lod->place()));
|
|
}
|
|
new_dim[0] *= lod_tensors.size();
|
|
Resize(new_dim);
|
|
|
|
auto *dst_ptr = reinterpret_cast<uint8_t *>(mutable_data(place, new_type));
|
|
for (auto *src : lod_tensors) {
|
|
auto size = src->numel() * SizeOfType(src->type());
|
|
memory::Copy(boost::get<platform::CPUPlace>(place), dst_ptr,
|
|
boost::get<platform::CPUPlace>(src->place()),
|
|
src->data<void>(), size);
|
|
dst_ptr += size;
|
|
}
|
|
}
|
|
|
|
} // namespace framework
|
|
} // namespace paddle
|