You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_assign_op.py

67 lines
2.6 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import op_test
import numpy as np
import unittest
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
class TestAssignOp(op_test.OpTest):
def setUp(self):
self.op_type = "assign"
x = np.random.random(size=(100, 10))
self.inputs = {'X': x}
self.outputs = {'Out': x}
def test_forward(self):
self.check_output()
def test_backward(self):
self.check_grad(['X'], 'Out')
class TestAssignOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
# The type of input must be Variable or numpy.ndarray.
x1 = fluid.create_lod_tensor(
np.array([[-1]]), [[1]], fluid.CPUPlace())
self.assertRaises(TypeError, fluid.layers.assign, x1)
# When the type of input is Variable, the dtype of input must be float32, float64, int32, int64, bool.
x3 = fluid.layers.data(name='x3', shape=[4], dtype="float16")
self.assertRaises(TypeError, fluid.layers.assign, x3)
x4 = fluid.layers.data(name='x4', shape=[4], dtype="uint8")
self.assertRaises(TypeError, fluid.layers.assign, x4)
# When the type of input is numpy.ndarray, the dtype of input must be float32, int32.
x5 = np.array([[2.5, 2.5]], dtype='bool')
self.assertRaises(TypeError, fluid.layers.assign, x5)
x6 = np.array([[2.5, 2.5]], dtype='float16')
self.assertRaises(TypeError, fluid.layers.assign, x6)
x7 = np.array([[2.5, 2.5]], dtype='float64')
self.assertRaises(TypeError, fluid.layers.assign, x7)
x8 = np.array([[2.5, 2.5]], dtype='int64')
self.assertRaises(TypeError, fluid.layers.assign, x8)
x9 = np.array([[2.5, 2.5]], dtype='uint8')
self.assertRaises(TypeError, fluid.layers.assign, x9)
if __name__ == '__main__':
unittest.main()