You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
160 lines
5.4 KiB
160 lines
5.4 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.layers as layers
|
|
import numpy as np
|
|
import os
|
|
import paddle.fluid.core as core
|
|
import unittest
|
|
from paddle.fluid.layers.nn import _pull_box_sparse
|
|
from paddle.fluid.transpiler import collective
|
|
|
|
|
|
class TestTranspile(unittest.TestCase):
|
|
""" TestCases for BoxPS Preload """
|
|
|
|
def get_transpile(self, mode, trainers="127.0.0.1:6174"):
|
|
config = fluid.DistributeTranspilerConfig()
|
|
config.mode = 'collective'
|
|
config.collective_mode = mode
|
|
t = fluid.DistributeTranspiler(config=config)
|
|
return t
|
|
|
|
def test_transpile(self):
|
|
main_program = fluid.Program()
|
|
startup_program = fluid.Program()
|
|
t = self.get_transpile("single_process_multi_thread")
|
|
t.transpile(
|
|
trainer_id=0,
|
|
startup_program=startup_program,
|
|
trainers="127.0.0.1:6174",
|
|
program=main_program)
|
|
t = self.get_transpile("grad_allreduce")
|
|
try:
|
|
t.transpile(
|
|
trainer_id=0,
|
|
startup_program=startup_program,
|
|
trainers="127.0.0.1:6174",
|
|
program=main_program)
|
|
except ValueError as e:
|
|
print(e)
|
|
|
|
def test_single_trainers(self):
|
|
transpiler = collective.GradAllReduce(0)
|
|
try:
|
|
transpiler.transpile(
|
|
startup_program=fluid.Program(),
|
|
main_program=fluid.Program(),
|
|
rank=1,
|
|
endpoints="127.0.0.1:6174",
|
|
current_endpoint="127.0.0.1:6174",
|
|
wait_port="6174")
|
|
except ValueError as e:
|
|
print(e)
|
|
transpiler = collective.LocalSGD(0)
|
|
try:
|
|
transpiler.transpile(
|
|
startup_program=fluid.Program(),
|
|
main_program=fluid.Program(),
|
|
rank=1,
|
|
endpoints="127.0.0.1:6174",
|
|
current_endpoint="127.0.0.1:6174",
|
|
wait_port="6174")
|
|
except ValueError as e:
|
|
print(e)
|
|
|
|
|
|
class TestBoxPSPreload(unittest.TestCase):
|
|
""" TestCases for BoxPS Preload """
|
|
|
|
def test_boxps_cpu(self):
|
|
self.run_boxps_preload(True)
|
|
|
|
def test_boxps_gpu(self):
|
|
self.run_boxps_preload(False)
|
|
|
|
def run_boxps_preload(self, is_cpu=True):
|
|
x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
|
|
y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
|
|
emb_x, emb_y = _pull_box_sparse([x, y], size=2)
|
|
emb_xp = _pull_box_sparse(x, size=2)
|
|
layers.Print(emb_xp)
|
|
concat = layers.concat([emb_x, emb_y], axis=1)
|
|
fc = layers.fc(input=concat,
|
|
name="fc",
|
|
size=1,
|
|
num_flatten_dims=1,
|
|
bias_attr=False)
|
|
loss = layers.reduce_mean(fc)
|
|
layers.Print(loss)
|
|
place = fluid.CPUPlace() if is_cpu or not core.is_compiled_with_cuda(
|
|
) else fluid.CUDAPlace(0)
|
|
exe = fluid.Executor(place)
|
|
optimizer = fluid.optimizer.SGD(learning_rate=0.5)
|
|
batch_size = 2
|
|
|
|
def binary_print(slot, fout):
|
|
fout.write(str(len(slot)) + " ")
|
|
for e in slot:
|
|
fout.write(str(e) + " ")
|
|
|
|
batch1 = np.ones(
|
|
(batch_size, 2, 1)).astype("int64").reshape(batch_size, 2, 1)
|
|
filelist = []
|
|
place_str = "cpu" if is_cpu else "gpu"
|
|
for i in range(2):
|
|
filelist.append("test_hdfs_" + place_str + "_" + str(i))
|
|
for f in filelist:
|
|
with open(f, "w") as fout:
|
|
for ins in batch1:
|
|
for slot in ins:
|
|
binary_print(slot, fout)
|
|
fout.write("\n")
|
|
|
|
def create_dataset():
|
|
dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
|
|
dataset.set_use_var([x, y])
|
|
dataset.set_batch_size(2)
|
|
dataset.set_thread(1)
|
|
dataset.set_filelist(filelist)
|
|
return dataset
|
|
|
|
datasets = []
|
|
datasets.append(create_dataset())
|
|
datasets.append(create_dataset())
|
|
optimizer.minimize(loss)
|
|
exe.run(fluid.default_startup_program())
|
|
datasets[0].load_into_memory()
|
|
datasets[0].begin_pass()
|
|
datasets[1].preload_into_memory()
|
|
exe.train_from_dataset(
|
|
program=fluid.default_main_program(),
|
|
dataset=datasets[0],
|
|
print_period=1)
|
|
datasets[0].end_pass()
|
|
datasets[1].wait_preload_done()
|
|
datasets[1].begin_pass()
|
|
exe.train_from_dataset(
|
|
program=fluid.default_main_program(),
|
|
dataset=datasets[1],
|
|
print_period=1)
|
|
datasets[1].end_pass()
|
|
for f in filelist:
|
|
os.remove(f)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|