You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_conv3d_transpose_op.py

694 lines
22 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
from op_test import OpTest
def conv3dtranspose_forward_naive(input_, filter_, attrs):
padding_algorithm = attrs['padding_algorithm']
if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
"It can only be 'SAME' or 'VALID'." %
str(padding_algorithm))
if attrs['data_format'] == 'NHWC':
input_ = np.transpose(input_, [0, 4, 1, 2, 3])
in_n, in_c, in_d, in_h, in_w = input_.shape
f_c, f_out_c, f_d, f_h, f_w = filter_.shape
groups = attrs['groups']
assert in_c == f_c
out_c = f_out_c * groups
sub_in_c = in_c // groups
stride, pad, dilations = attrs['strides'], attrs['paddings'], attrs[
'dilations']
def _get_padding_with_SAME(input_shape, kernel_size, kernel_stride):
padding = []
for input_size, filter_size, stride_size in zip(
input_shape, kernel_size, kernel_stride):
out_size = int((input_size + stride_size - 1) / stride_size)
pad_sum = np.max((
(out_size - 1) * stride_size + filter_size - input_size, 0))
pad_0 = int(pad_sum / 2)
pad_1 = int(pad_sum - pad_0)
padding.append(pad_0)
padding.append(pad_1)
return padding
ksize = filter_.shape[2:5]
if padding_algorithm == "VALID":
pad = [0, 0, 0, 0, 0, 0]
elif padding_algorithm == "SAME":
dilations = [1, 1, 1]
input_data_shape = input_.shape[2:5]
pad = _get_padding_with_SAME(input_data_shape, ksize, stride)
pad_d_0, pad_d_1 = pad[0], pad[0]
pad_h_0, pad_h_1 = pad[1], pad[1]
pad_w_0, pad_w_1 = pad[2], pad[2]
if len(pad) == 6:
pad_d_0, pad_d_1 = pad[0], pad[1]
pad_h_0, pad_h_1 = pad[2], pad[3]
pad_w_0, pad_w_1 = pad[4], pad[5]
d_bolck_d = dilations[0] * (f_d - 1) + 1
d_bolck_h = dilations[1] * (f_h - 1) + 1
d_bolck_w = dilations[2] * (f_w - 1) + 1
out_d = (in_d - 1) * stride[0] + d_bolck_d
out_h = (in_h - 1) * stride[1] + d_bolck_h
out_w = (in_w - 1) * stride[2] + d_bolck_w
out = np.zeros((in_n, out_c, out_d, out_h, out_w))
for n in range(in_n):
for d in range(in_d):
for i in range(in_h):
for j in range(in_w):
for g in range(groups):
input_masked = input_[n, g * sub_in_c:(g + 1
) * sub_in_c, d,
i, j] # (c)
input_masked = np.reshape(input_masked,
(sub_in_c, 1, 1, 1))
input_masked = np.tile(input_masked, (1, f_d, f_h, f_w))
for k in range(f_out_c):
tmp_out = np.sum(input_masked * filter_[
g * sub_in_c:(g + 1) * sub_in_c, k, :, :, :],
axis=0)
d1, d2 = d * stride[0], d * stride[0] + d_bolck_d
i1, i2 = i * stride[1], i * stride[1] + d_bolck_h
j1, j2 = j * stride[2], j * stride[2] + d_bolck_w
out[n, g * f_out_c + k, d1:d2:dilations[0], i1:i2:
dilations[1], j1:j2:dilations[2]] += tmp_out
out = out[:, :, pad_d_0:out_d - pad_d_1, pad_h_0:out_h - pad_h_1, pad_w_0:
out_w - pad_w_1]
if attrs['data_format'] == 'NHWC':
out = np.transpose(out, [0, 2, 3, 4, 1])
return out
class TestConv3dTransposeOp(OpTest):
def setUp(self):
# init as conv transpose
self.use_cudnn = False
self.data_format = 'NCHW'
self.pad = [0, 0, 0]
self.padding_algorithm = "EXPLICIT"
self.init_op_type()
self.init_test_case()
input_ = np.random.random(self.input_size).astype("float32")
filter_ = np.random.random(self.filter_size).astype("float32")
self.inputs = {'Input': input_, 'Filter': filter_}
self.attrs = {
'strides': self.stride,
'paddings': self.pad,
'padding_algorithm': self.padding_algorithm,
'dilations': self.dilations,
'groups': self.groups,
'use_cudnn': self.use_cudnn,
'data_format': self.data_format
}
output = conv3dtranspose_forward_naive(input_, filter_,
self.attrs).astype("float32")
self.outputs = {'Output': output}
def test_check_output(self):
if self.use_cudnn:
place = core.CUDAPlace(0)
self.check_output_with_place(place, atol=1e-5)
else:
self.check_output()
def test_check_grad(self):
if self.use_cudnn:
place = core.CUDAPlace(0)
self.check_grad_with_place(
place,
set(['Input', 'Filter']),
'Output',
max_relative_error=0.03)
else:
self.check_grad(
set(['Input', 'Filter']), 'Output', max_relative_error=0.03)
def test_check_grad_no_filter(self):
if self.use_cudnn:
place = core.CUDAPlace(0)
self.check_grad_with_place(
place, ['Input'],
'Output',
max_relative_error=0.03,
no_grad_set=set(['Filter']))
else:
self.check_grad(
['Input'],
'Output',
max_relative_error=0.03,
no_grad_set=set(['Filter']))
def test_check_grad_no_input(self):
if self.use_cudnn:
place = core.CUDAPlace(0)
self.check_grad_with_place(
place, ['Filter'],
'Output',
max_relative_error=0.03,
no_grad_set=set(['Input']))
else:
self.check_grad(
['Filter'],
'Output',
max_relative_error=0.03,
no_grad_set=set(['Input']))
def init_test_case(self):
self.pad = [0, 0, 0]
self.stride = [1, 1, 1]
self.dilations = [1, 1, 1]
self.groups = 1
self.input_size = [2, 3, 5, 5, 5] # NCDHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3, 3]
def init_op_type(self):
self.op_type = "conv3d_transpose"
class TestWithSymmetricPad(TestConv3dTransposeOp):
def init_test_case(self):
self.pad = [1, 1, 1]
self.stride = [1, 1, 1]
self.dilations = [1, 1, 1]
self.groups = 1
self.input_size = [2, 3, 5, 5, 5] # NCDHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3, 3]
class TestWithAsymmetricPad(TestConv3dTransposeOp):
def init_test_case(self):
self.pad = [1, 0, 1, 0, 1, 2]
self.stride = [1, 1, 1]
self.dilations = [1, 1, 1]
self.groups = 1
self.input_size = [2, 3, 5, 5, 5] # NCDHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3, 3]
class TestWithSAMEPad(TestConv3dTransposeOp):
def init_test_case(self):
self.stride = [1, 1, 2]
self.dilations = [1, 2, 1]
self.groups = 1
self.input_size = [2, 3, 5, 5, 6] # NCDHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3, 4]
self.padding_algorithm = 'SAME'
class TestWithVALIDPad(TestConv3dTransposeOp):
def init_test_case(self):
self.stride = [2, 1, 1]
self.dilations = [1, 1, 1]
self.groups = 1
self.input_size = [2, 3, 5, 5, 5] # NCDHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 4, 3]
self.padding_algorithm = 'VALID'
class TestWithGroups(TestConv3dTransposeOp):
def init_test_case(self):
self.pad = [1, 1, 1]
self.stride = [1, 1, 1]
self.dilations = [1, 1, 1]
self.groups = 2
self.input_size = [2, 4, 5, 5, 5] # NCHW
f_c = self.input_size[1]
self.filter_size = [f_c, 3, 3, 3, 3]
class TestWithStride(TestConv3dTransposeOp):
def init_test_case(self):
self.pad = [1, 1, 1]
self.stride = [2, 2, 2]
self.dilations = [1, 1, 1]
self.groups = 1
self.input_size = [2, 3, 5, 5, 5] # NCDHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3, 3]
class TestWithDilation(TestConv3dTransposeOp):
def init_test_case(self):
self.pad = [1, 1, 1]
self.stride = [1, 1, 1]
self.dilations = [2, 2, 2]
self.groups = 1
self.input_size = [2, 3, 5, 5, 5] # NCDHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3, 3]
class Test_NHWC(TestConv3dTransposeOp):
def init_test_case(self):
self.pad = [0, 0, 0]
self.stride = [1, 1, 1]
self.dilations = [1, 1, 1]
self.groups = 1
self.input_size = [2, 5, 5, 5, 3] # NDHWC
f_c = self.input_size[-1]
self.filter_size = [f_c, 6, 3, 3, 3]
self.data_format = 'NHWC'
class TestWithSymmetricPad_NHWC(TestConv3dTransposeOp):
def init_test_case(self):
self.pad = [1, 1, 1]
self.stride = [1, 1, 1]
self.dilations = [1, 1, 1]
self.groups = 1
self.input_size = [2, 5, 5, 5, 3] # NDHWC
f_c = self.input_size[-1]
self.filter_size = [f_c, 6, 3, 3, 3]
self.data_format = 'NHWC'
class TestWithAsymmetricPad_NHWC(TestConv3dTransposeOp):
def init_test_case(self):
self.pad = [1, 0, 1, 0, 1, 2]
self.stride = [1, 1, 1]
self.dilations = [1, 1, 1]
self.groups = 1
self.input_size = [2, 5, 5, 5, 3] # NDHWC
f_c = self.input_size[-1]
self.filter_size = [f_c, 6, 3, 3, 3]
self.data_format = 'NHWC'
class TestWithGroups_NHWC(TestConv3dTransposeOp):
def init_test_case(self):
self.pad = [1, 1, 1]
self.stride = [1, 1, 1]
self.dilations = [1, 1, 1]
self.groups = 2
self.input_size = [2, 5, 5, 5, 4] # NDHWC
f_c = self.input_size[-1]
self.filter_size = [f_c, 3, 3, 3, 3]
self.data_format = 'NHWC'
class TestWithStride_NHWC(TestConv3dTransposeOp):
def init_test_case(self):
self.pad = [1, 1, 1]
self.stride = [2, 2, 2]
self.dilations = [1, 1, 1]
self.groups = 1
self.input_size = [2, 5, 5, 5, 3] # NCDHW
f_c = self.input_size[-1]
self.filter_size = [f_c, 6, 3, 3, 3]
self.data_format = 'NHWC'
class TestWithDilation_NHWC(TestConv3dTransposeOp):
def init_test_case(self):
self.pad = [1, 1, 1]
self.stride = [1, 1, 1]
self.dilations = [2, 2, 2]
self.groups = 1
self.input_size = [2, 5, 5, 5, 3] # NCDHW
f_c = self.input_size[-1]
self.filter_size = [f_c, 6, 3, 3, 3]
self.data_format = 'NHWC'
# ------------ test_cudnn ------------
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNN(TestConv3dTransposeOp):
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv3d_transpose"
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNWithSymmetricPad(TestWithSymmetricPad):
def init_test_case(self):
self.pad = [1, 1, 1]
self.stride = [1, 1, 1]
self.dilations = [1, 1, 1]
self.groups = 1
self.input_size = [2, 3, 5, 5, 5] # NCDHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3, 3]
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv3d_transpose"
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNWithAsymmetricPad(TestWithAsymmetricPad):
def init_test_case(self):
self.pad = [1, 1, 1, 0, 0, 2]
self.stride = [1, 1, 1]
self.dilations = [1, 1, 1]
self.groups = 1
self.input_size = [2, 3, 4, 4, 4] # NCDHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3, 3]
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv3d_transpose"
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNWithSAMEPad(TestWithSAMEPad):
def init_test_case(self):
self.stride = [1, 1, 2]
self.dilations = [1, 2, 1]
self.groups = 1
self.input_size = [2, 3, 5, 5, 5] # NCDHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 4, 3]
self.padding_algorithm = 'SAME'
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv3d_transpose"
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNWithVALIDPad(TestWithVALIDPad):
def init_test_case(self):
self.stride = [1, 1, 1]
self.dilations = [1, 1, 1]
self.groups = 1
self.input_size = [2, 3, 5, 5, 5] # NCDHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3, 3]
self.padding_algorithm = 'VALID'
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv3d_transpose"
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNWithStride(TestWithStride):
def init_test_case(self):
self.pad = [1, 1, 1]
self.stride = [2, 2, 2]
self.dilations = [1, 1, 1]
self.groups = 1
self.input_size = [2, 3, 5, 5, 5] # NCDHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3, 3]
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv3d_transpose"
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNWithGroups(TestWithGroups):
def init_test_case(self):
self.pad = [1, 1, 1]
self.stride = [1, 1, 1]
self.dilations = [1, 1, 1]
self.groups = 2
self.input_size = [2, 4, 5, 5, 5] # NCHW
f_c = self.input_size[1]
self.filter_size = [f_c, 3, 3, 3, 3]
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv3d_transpose"
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
# class TestCUDNNWithDilation(TestWithDilation):
# def init_test_case(self):
# self.pad = [1, 1, 1]
# self.stride = [2, 2, 2]
# self.dilations = [2, 2, 2]
# self.input_size = [2, 3, 5, 5, 5] # NCDHW
# f_c = self.input_size[1]
# self.filter_size = [f_c, 6, 3, 3, 3]
#
# def init_op_type(self):
# self.op_type = "conv3d_transpose"
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNN_NHWC(TestConv3dTransposeOp):
def init_test_case(self):
self.pad = [0, 0, 0]
self.stride = [1, 1, 1]
self.dilations = [1, 1, 1]
self.groups = 1
self.input_size = [2, 5, 5, 5, 3] # NDHWC
f_c = self.input_size[-1]
self.filter_size = [f_c, 6, 3, 3, 3]
self.data_format = 'NHWC'
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv3d_transpose"
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNWithSymmetricPad_NHWC(TestWithSymmetricPad):
def init_test_case(self):
self.pad = [1, 1, 1]
self.stride = [1, 1, 1]
self.dilations = [1, 1, 1]
self.groups = 1
self.input_size = [2, 5, 5, 5, 3] # NDHWC
f_c = self.input_size[-1]
self.filter_size = [f_c, 6, 3, 3, 3]
self.data_format = 'NHWC'
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv3d_transpose"
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNWithAsymmetricPad_NHWC(TestWithAsymmetricPad):
def init_test_case(self):
self.pad = [1, 0, 1, 0, 0, 2]
self.stride = [1, 1, 1]
self.dilations = [1, 1, 1]
self.groups = 1
self.input_size = [2, 5, 5, 5, 3] # NDHWC
f_c = self.input_size[-1]
self.filter_size = [f_c, 6, 3, 3, 3]
self.data_format = 'NHWC'
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv3d_transpose"
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNWithStride_NHWC(TestWithStride):
def init_test_case(self):
self.pad = [1, 1, 1]
self.stride = [2, 2, 2]
self.dilations = [1, 1, 1]
self.groups = 1
self.input_size = [2, 5, 5, 5, 3] # NCDHW
f_c = self.input_size[-1]
self.filter_size = [f_c, 6, 3, 3, 3]
self.data_format = 'NHWC'
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv3d_transpose"
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNWithGroups_NHWC(TestWithGroups):
def init_test_case(self):
self.pad = [1, 1, 1]
self.stride = [1, 1, 1]
self.dilations = [1, 1, 1]
self.groups = 2
self.input_size = [2, 5, 5, 5, 4] # NCHW
f_c = self.input_size[-1]
self.filter_size = [f_c, 3, 3, 3, 3]
self.data_format = 'NHWC'
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv3d_transpose"
class TestConv3dTransposeAPI(unittest.TestCase):
def test_case1(self):
data1 = fluid.layers.data(
name='data1', shape=[3, 5, 5, 5], dtype='float32')
data2 = fluid.layers.data(
name='data2', shape=[5, 5, 5, 3], dtype='float32')
out1 = fluid.layers.conv3d_transpose(
input=data1,
groups=1,
num_filters=6,
filter_size=3,
data_format='NCDHW')
out2 = fluid.layers.conv3d_transpose(
input=data2,
groups=1,
num_filters=6,
filter_size=3,
data_format='NDHWC')
out3 = fluid.layers.conv3d_transpose(
input=data1,
groups=1,
num_filters=6,
filter_size=3,
padding=[[0, 0], [0, 0], [1, 1], [0, 0], [1, 1]],
data_format='NCDHW')
out4 = fluid.layers.conv3d_transpose(
input=data2,
groups=3,
num_filters=6,
filter_size=3,
padding=[[0, 0], [0, 0], [1, 1], [1, 2], [0, 0]],
data_format='NDHWC')
out5 = fluid.layers.conv3d_transpose(
input=data2,
groups=1,
num_filters=6,
filter_size=3,
padding='SAME',
data_format='NCDHW')
out6 = fluid.layers.conv3d_transpose(
input=data2,
groups=1,
num_filters=6,
filter_size=3,
padding='VALID',
data_format='NDHWC')
out7 = fluid.layers.conv3d_transpose(
input=data2,
groups=1,
num_filters=6,
output_size=[7, 7, 7],
padding=[0, 0, 0],
data_format='NDHWC')
data1_np = np.random.random((2, 3, 5, 5, 5)).astype("float32")
data2_np = np.random.random((2, 5, 5, 5, 3)).astype("float32")
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
results = exe.run(
fluid.default_main_program(),
feed={"data1": data1_np,
"data2": data2_np},
fetch_list=[out1, out2, out3, out4, out5, out6, out7],
return_numpy=True)
self.assertIsNotNone(results[0])
self.assertIsNotNone(results[1])
self.assertIsNotNone(results[2])
self.assertIsNotNone(results[3])
self.assertIsNotNone(results[4])
self.assertIsNotNone(results[5])
self.assertIsNotNone(results[6])
class TestConv3dTransposeOpException(unittest.TestCase):
def test_exception(self):
data = fluid.layers.data(
name='data', shape=[3, 5, 5, 5], dtype="float32")
def attr_data_format():
out = fluid.layers.conv2d_transpose(
input=data,
groups=1,
num_filters=6,
filter_size=3,
data_format="NCDW")
self.assertRaises(ValueError, attr_data_format)
def attr_padding_str():
out = fluid.layers.conv2d_transpose(
input=data,
groups=1,
num_filters=6,
filter_size=3,
padding='Vald')
self.assertRaises(ValueError, attr_padding_str)
def attr_padding_list():
out = fluid.layers.conv2d_transpose(
input=data,
groups=1,
num_filters=6,
filter_size=3,
padding=[[1, 1], [1, 1], [0, 0], [0, 0], [1, 1]])
self.assertRaises(ValueError, attr_padding_list)
def attr_padding_with_data_format():
out = fluid.layers.conv2d_transpose(
input=data,
groups=1,
num_filters=6,
filter_size=3,
padding=[[1, 1], [0, 0], [0, 0], [1, 0], [1, 1]],
data_format='NDHWC')
self.assertRaises(ValueError, attr_padding_with_data_format)
if __name__ == '__main__':
unittest.main()