You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
579 lines
24 KiB
579 lines
24 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
import unittest
|
|
from paddle import fluid
|
|
from paddle.fluid import layers
|
|
from paddle.fluid.layers.distributions import *
|
|
import math
|
|
|
|
|
|
class DistributionNumpy():
|
|
"""
|
|
Distribution is the abstract base class for probability distributions.
|
|
"""
|
|
|
|
def sample(self):
|
|
"""Sampling from the distribution."""
|
|
raise NotImplementedError
|
|
|
|
def entropy(self):
|
|
"""The entropy of the distribution."""
|
|
raise NotImplementedError
|
|
|
|
def kl_divergence(self, other):
|
|
"""The KL-divergence between self distributions and other."""
|
|
raise NotImplementedError
|
|
|
|
def log_prob(self, value):
|
|
"""Log probability density/mass function."""
|
|
raise NotImplementedError
|
|
|
|
|
|
class UniformNumpy(DistributionNumpy):
|
|
def __init__(self, low, high):
|
|
self.low = np.array(low).astype('float32')
|
|
self.high = np.array(high).astype('float32')
|
|
|
|
def sample(self, shape):
|
|
shape = tuple(shape) + (self.low + self.high).shape
|
|
return self.low + (np.random.uniform(size=shape) *
|
|
(self.high - self.low))
|
|
|
|
def log_prob(self, value):
|
|
lb = np.less(self.low, value).astype('float32')
|
|
ub = np.less(value, self.high).astype('float32')
|
|
return np.log(lb * ub) - np.log(self.high - self.low)
|
|
|
|
def entropy(self):
|
|
return np.log(self.high - self.low)
|
|
|
|
|
|
class NormalNumpy(DistributionNumpy):
|
|
def __init__(self, loc, scale):
|
|
self.loc = np.array(loc).astype('float32')
|
|
self.scale = np.array(scale).astype('float32')
|
|
|
|
def sample(self, shape):
|
|
shape = tuple(shape) + (self.loc + self.scale).shape
|
|
return self.loc + (np.random.randn(*shape) * self.scale)
|
|
|
|
def log_prob(self, value):
|
|
var = self.scale * self.scale
|
|
log_scale = np.log(self.scale)
|
|
return -((value - self.loc) * (value - self.loc)) / (
|
|
2. * var) - log_scale - math.log(math.sqrt(2. * math.pi))
|
|
|
|
def entropy(self):
|
|
return 0.5 + 0.5 * np.log(np.array(2. * math.pi).astype(
|
|
'float32')) + np.log(self.scale)
|
|
|
|
def kl_divergence(self, other):
|
|
var_ratio = (self.scale / other.scale)
|
|
var_ratio = var_ratio * var_ratio
|
|
t1 = ((self.loc - other.loc) / other.scale)
|
|
t1 = (t1 * t1)
|
|
return 0.5 * (var_ratio + t1 - 1 - np.log(var_ratio))
|
|
|
|
|
|
class CategoricalNumpy(DistributionNumpy):
|
|
def __init__(self, logits):
|
|
self.logits = np.array(logits).astype('float32')
|
|
|
|
def entropy(self):
|
|
logits = self.logits - np.max(self.logits, axis=-1, keepdims=True)
|
|
e_logits = np.exp(logits)
|
|
z = np.sum(e_logits, axis=-1, keepdims=True)
|
|
prob = e_logits / z
|
|
return -1. * np.sum(prob * (logits - np.log(z)), axis=-1, keepdims=True)
|
|
|
|
def kl_divergence(self, other):
|
|
logits = self.logits - np.max(self.logits, axis=-1, keepdims=True)
|
|
other_logits = other.logits - np.max(
|
|
other.logits, axis=-1, keepdims=True)
|
|
e_logits = np.exp(logits)
|
|
other_e_logits = np.exp(other_logits)
|
|
z = np.sum(e_logits, axis=-1, keepdims=True)
|
|
other_z = np.sum(other_e_logits, axis=-1, keepdims=True)
|
|
prob = e_logits / z
|
|
return np.sum(prob * (logits - np.log(z) - other_logits \
|
|
+ np.log(other_z)), axis=-1, keepdims=True)
|
|
|
|
|
|
class MultivariateNormalDiagNumpy(DistributionNumpy):
|
|
def __init__(self, loc, scale):
|
|
self.loc = np.array(loc).astype('float32')
|
|
self.scale = np.array(scale).astype('float32')
|
|
|
|
def _det(self, value):
|
|
batch_shape = list(value.shape)
|
|
one_all = np.ones(shape=batch_shape, dtype='float32')
|
|
one_diag = np.eye(batch_shape[0], dtype='float32')
|
|
det_diag = np.prod(value + one_all - one_diag)
|
|
|
|
return det_diag
|
|
|
|
def _inv(self, value):
|
|
batch_shape = list(value.shape)
|
|
one_all = np.ones(shape=batch_shape, dtype='float32')
|
|
one_diag = np.eye(batch_shape[0], dtype='float32')
|
|
inv_diag = np.power(value, (one_all - 2 * one_diag))
|
|
|
|
return inv_diag
|
|
|
|
def entropy(self):
|
|
return 0.5 * (self.scale.shape[0] *
|
|
(1.0 + np.log(np.array(2 * math.pi).astype('float32'))
|
|
) + np.log(self._det(self.scale)))
|
|
|
|
def kl_divergence(self, other):
|
|
tr_cov_matmul = np.sum(self._inv(other.scale) * self.scale)
|
|
loc_matmul_cov = np.matmul((other.loc - self.loc),
|
|
self._inv(other.scale))
|
|
tri_matmul = np.matmul(loc_matmul_cov, (other.loc - self.loc))
|
|
k = list(self.scale.shape)[0]
|
|
ln_cov = np.log(self._det(other.scale)) - np.log(self._det(self.scale))
|
|
kl = 0.5 * (tr_cov_matmul + tri_matmul - k + ln_cov)
|
|
|
|
return kl
|
|
|
|
|
|
class DistributionTest(unittest.TestCase):
|
|
def setUp(self, use_gpu=False):
|
|
self.use_gpu = use_gpu
|
|
if not use_gpu:
|
|
place = fluid.CPUPlace()
|
|
self.gpu_id = -1
|
|
else:
|
|
place = fluid.CUDAPlace(0)
|
|
self.gpu_id = 0
|
|
self.executor = fluid.Executor(place)
|
|
|
|
def build_normal_program(self, test_program, batch_size, dims, loc_float,
|
|
scale_float, other_loc_float, other_scale_float,
|
|
scale_np, other_scale_np, loc_np, other_loc_np,
|
|
values_np):
|
|
with fluid.program_guard(test_program):
|
|
loc = layers.data(name='loc', shape=[dims], dtype='float32')
|
|
scale = layers.data(name='scale', shape=[dims], dtype='float32')
|
|
|
|
other_loc = layers.data(
|
|
name='other_loc', shape=[dims], dtype='float32')
|
|
other_scale = layers.data(
|
|
name='other_scale', shape=[dims], dtype='float32')
|
|
|
|
values = layers.data(name='values', shape=[dims], dtype='float32')
|
|
|
|
normal_float = Normal(loc_float, scale_float)
|
|
other_normal_float = Normal(other_loc_float, other_scale_float)
|
|
|
|
normal_float_np_broadcast = Normal(loc_float, scale_np)
|
|
other_normal_float_np_broadcast = Normal(other_loc_float,
|
|
other_scale_np)
|
|
|
|
normal_np = Normal(loc_np, scale_np)
|
|
other_normal_np = Normal(other_loc_np, other_scale_np)
|
|
|
|
normal_variable = Normal(loc, scale)
|
|
other_normal_variable = Normal(other_loc, other_scale)
|
|
|
|
sample_float = normal_float.sample([batch_size, dims])
|
|
sample_float_np_broadcast = normal_float_np_broadcast.sample(
|
|
[batch_size, dims])
|
|
sample_np = normal_np.sample([batch_size, dims])
|
|
sample_variable = normal_variable.sample([batch_size, dims])
|
|
|
|
entropy_float = normal_float.entropy()
|
|
entropy_float_np_broadcast = normal_float_np_broadcast.entropy()
|
|
entropy_np = normal_np.entropy()
|
|
entropy_variable = normal_variable.entropy()
|
|
|
|
lp_float_np_broadcast = normal_float_np_broadcast.log_prob(values)
|
|
lp_np = normal_np.log_prob(values)
|
|
lp_variable = normal_variable.log_prob(values)
|
|
|
|
kl_float = normal_float.kl_divergence(other_normal_float)
|
|
kl_float_np_broadcast = normal_float_np_broadcast.kl_divergence(
|
|
other_normal_float_np_broadcast)
|
|
kl_np = normal_np.kl_divergence(other_normal_np)
|
|
kl_variable = normal_variable.kl_divergence(other_normal_variable)
|
|
|
|
fetch_list = [
|
|
sample_float, sample_float_np_broadcast, sample_np, sample_variable,
|
|
entropy_float, entropy_float_np_broadcast, entropy_np,
|
|
entropy_variable, lp_float_np_broadcast, lp_np, lp_variable,
|
|
kl_float, kl_float_np_broadcast, kl_np, kl_variable
|
|
]
|
|
feed_vars = {
|
|
'loc': loc_np,
|
|
'scale': scale_np,
|
|
'other_loc': other_loc_np,
|
|
'other_scale': other_scale_np,
|
|
'values': values_np
|
|
}
|
|
return feed_vars, fetch_list
|
|
|
|
def get_normal_random_input(self, batch_size, dims):
|
|
loc_np = np.random.randn(batch_size, dims).astype('float32')
|
|
other_loc_np = np.random.randn(batch_size, dims).astype('float32')
|
|
|
|
loc_float = (np.random.ranf() - 0.5) * 4
|
|
scale_float = (np.random.ranf() - 0.5) * 4
|
|
while scale_float < 0:
|
|
scale_float = (np.random.ranf() - 0.5) * 4
|
|
|
|
other_loc_float = (np.random.ranf() - 0.5) * 4
|
|
other_scale_float = (np.random.ranf() - 0.5) * 4
|
|
while other_scale_float < 0:
|
|
other_scale_float = (np.random.ranf() - 0.5) * 4
|
|
|
|
scale_np = np.random.randn(batch_size, dims).astype('float32')
|
|
other_scale_np = np.random.randn(batch_size, dims).astype('float32')
|
|
values_np = np.random.randn(batch_size, dims).astype('float32')
|
|
|
|
while not np.all(scale_np > 0):
|
|
scale_np = np.random.randn(batch_size, dims).astype('float32')
|
|
while not np.all(other_scale_np > 0):
|
|
other_scale_np = np.random.randn(batch_size, dims).astype('float32')
|
|
return loc_np, other_loc_np, loc_float, scale_float, other_loc_float, \
|
|
other_scale_float, scale_np, other_scale_np, values_np
|
|
|
|
def test_normal_distribution(self, batch_size=2, dims=3, tolerance=1e-6):
|
|
test_program = fluid.Program()
|
|
loc_np, other_loc_np, loc_float, scale_float, other_loc_float, other_scale_float, scale_np, other_scale_np, values_np = self.get_normal_random_input(
|
|
batch_size, dims)
|
|
|
|
feed_vars, fetch_list = self.build_normal_program(
|
|
test_program, batch_size, dims, loc_float, scale_float,
|
|
other_loc_float, other_scale_float, scale_np, other_scale_np,
|
|
loc_np, other_loc_np, values_np)
|
|
self.executor.run(fluid.default_startup_program())
|
|
|
|
np_normal_float = NormalNumpy(loc_float, scale_float)
|
|
np_other_normal_float = NormalNumpy(other_loc_float, other_scale_float)
|
|
np_normal_float_np_broadcast = NormalNumpy(loc_float, scale_np)
|
|
np_other_normal_float_np_broadcast = NormalNumpy(other_loc_float,
|
|
other_scale_np)
|
|
np_normal = NormalNumpy(loc_np, scale_np)
|
|
np_other_normal = NormalNumpy(other_loc_np, other_scale_np)
|
|
|
|
gt_sample_float = np_normal_float.sample([batch_size, dims])
|
|
gt_sample_float_np_broadcast = np_normal_float_np_broadcast.sample(
|
|
[batch_size, dims])
|
|
gt_sample_np = np_normal.sample([batch_size, dims])
|
|
gt_entropy_float = np_normal_float.entropy()
|
|
gt_entropy_float_np_broadcast = np_normal_float_np_broadcast.entropy()
|
|
gt_entropy = np_normal.entropy()
|
|
gt_lp_float_np_broadcast = np_normal_float_np_broadcast.log_prob(
|
|
values_np)
|
|
gt_lp = np_normal.log_prob(values_np)
|
|
gt_kl_float = np_normal_float.kl_divergence(np_other_normal_float)
|
|
gt_kl_float_np_broadcast = np_normal_float_np_broadcast.kl_divergence(
|
|
np_other_normal_float_np_broadcast)
|
|
gt_kl = np_normal.kl_divergence(np_other_normal)
|
|
|
|
[
|
|
output_sample_float, output_sample_float_np_broadcast,
|
|
output_sample_np, output_sample_variable, output_entropy_float,
|
|
output_entropy_float_np_broadcast, output_entropy_np,
|
|
output_entropy_variable, output_lp_float_np_broadcast, output_lp_np,
|
|
output_lp_variable, output_kl_float, output_kl_float_np_broadcast,
|
|
output_kl_np, output_kl_variable
|
|
] = self.executor.run(program=test_program,
|
|
feed=feed_vars,
|
|
fetch_list=fetch_list)
|
|
|
|
np.testing.assert_allclose(
|
|
output_sample_float.shape,
|
|
gt_sample_float.shape,
|
|
rtol=tolerance,
|
|
atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_sample_float_np_broadcast.shape,
|
|
gt_sample_float_np_broadcast.shape,
|
|
rtol=tolerance,
|
|
atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_sample_np.shape,
|
|
gt_sample_np.shape,
|
|
rtol=tolerance,
|
|
atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_sample_variable.shape,
|
|
gt_sample_np.shape,
|
|
rtol=tolerance,
|
|
atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_entropy_float,
|
|
gt_entropy_float,
|
|
rtol=tolerance,
|
|
atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_entropy_float_np_broadcast,
|
|
gt_entropy_float_np_broadcast,
|
|
rtol=tolerance,
|
|
atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_entropy_np, gt_entropy, rtol=tolerance, atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_entropy_variable, gt_entropy, rtol=tolerance, atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_lp_float_np_broadcast,
|
|
gt_lp_float_np_broadcast,
|
|
rtol=tolerance,
|
|
atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_lp_np, gt_lp, rtol=tolerance, atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_lp_variable, gt_lp, rtol=tolerance, atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_kl_float, gt_kl_float, rtol=tolerance, atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_kl_float_np_broadcast,
|
|
gt_kl_float_np_broadcast,
|
|
rtol=tolerance,
|
|
atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_kl_np, gt_kl, rtol=tolerance, atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_kl_variable, gt_kl, rtol=tolerance, atol=tolerance)
|
|
|
|
def build_uniform_program(self, test_program, batch_size, dims, low_float,
|
|
high_float, high_np, low_np, values_np):
|
|
with fluid.program_guard(test_program):
|
|
low = layers.data(name='low', shape=[dims], dtype='float32')
|
|
high = layers.data(name='high', shape=[dims], dtype='float32')
|
|
|
|
values = layers.data(name='values', shape=[dims], dtype='float32')
|
|
|
|
uniform_float = Uniform(low_float, high_float)
|
|
uniform_float_np_broadcast = Uniform(low_float, high_np)
|
|
uniform_np = Uniform(low_np, high_np)
|
|
uniform_variable = Uniform(low, high)
|
|
|
|
sample_float = uniform_float.sample([batch_size, dims])
|
|
sample_float_np_broadcast = uniform_float_np_broadcast.sample(
|
|
[batch_size, dims])
|
|
sample_np = uniform_np.sample([batch_size, dims])
|
|
sample_variable = uniform_variable.sample([batch_size, dims])
|
|
|
|
entropy_float = uniform_float.entropy()
|
|
entropy_float_np_broadcast = uniform_float_np_broadcast.entropy()
|
|
entropy_np = uniform_np.entropy()
|
|
entropy_variable = uniform_variable.entropy()
|
|
|
|
lp_float_np_broadcast = uniform_float_np_broadcast.log_prob(values)
|
|
lp_np = uniform_np.log_prob(values)
|
|
lp_variable = uniform_variable.log_prob(values)
|
|
|
|
fetch_list = [
|
|
sample_float, sample_float_np_broadcast, sample_np, sample_variable,
|
|
entropy_float, entropy_float_np_broadcast, entropy_np,
|
|
entropy_variable, lp_float_np_broadcast, lp_np, lp_variable
|
|
]
|
|
feed_vars = {'low': low_np, 'high': high_np, 'values': values_np}
|
|
return feed_vars, fetch_list
|
|
|
|
def test_uniform_distribution(self, batch_size=2, dims=3, tolerance=1e-6):
|
|
test_program = fluid.Program()
|
|
|
|
low_np = np.random.randn(batch_size, dims).astype('float32')
|
|
low_float = np.random.uniform(-2, 1)
|
|
high_float = np.random.uniform(1, 3)
|
|
high_np = np.random.uniform(-5.0, 5.0,
|
|
(batch_size, dims)).astype('float32')
|
|
values_np = np.random.randn(batch_size, dims).astype('float32')
|
|
|
|
feed_vars, fetch_list = self.build_uniform_program(
|
|
test_program, batch_size, dims, low_float, high_float, high_np,
|
|
low_np, values_np)
|
|
|
|
self.executor.run(fluid.default_startup_program())
|
|
|
|
np_uniform_float = UniformNumpy(low_float, high_float)
|
|
np_uniform_float_np_broadcast = UniformNumpy(low_float, high_np)
|
|
np_uniform = UniformNumpy(low_np, high_np)
|
|
|
|
gt_sample_float = np_uniform_float.sample([batch_size, dims])
|
|
gt_sample_float_np_broadcast = np_uniform_float_np_broadcast.sample(
|
|
[batch_size, dims])
|
|
gt_sample_np = np_uniform.sample([batch_size, dims])
|
|
gt_entropy_float = np_uniform_float.entropy()
|
|
gt_entropy_float_np_broadcast = np_uniform_float_np_broadcast.entropy()
|
|
gt_entropy = np_uniform.entropy()
|
|
gt_lp_float_np_broadcast = np_uniform_float_np_broadcast.log_prob(
|
|
values_np)
|
|
gt_lp = np_uniform.log_prob(values_np)
|
|
|
|
# result calculated by paddle
|
|
[
|
|
output_sample_float, output_sample_float_np_broadcast,
|
|
output_sample_np, output_sample_variable, output_entropy_float,
|
|
output_entropy_float_np_broadcast, output_entropy_np,
|
|
output_entropy_variable, output_lp_float_np_broadcast, output_lp_np,
|
|
output_lp_variable
|
|
] = self.executor.run(program=test_program,
|
|
feed=feed_vars,
|
|
fetch_list=fetch_list)
|
|
|
|
np.testing.assert_allclose(
|
|
output_sample_float.shape,
|
|
gt_sample_float.shape,
|
|
rtol=tolerance,
|
|
atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_sample_float_np_broadcast.shape,
|
|
gt_sample_float_np_broadcast.shape,
|
|
rtol=tolerance,
|
|
atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_sample_np.shape,
|
|
gt_sample_np.shape,
|
|
rtol=tolerance,
|
|
atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_sample_variable.shape,
|
|
gt_sample_np.shape,
|
|
rtol=tolerance,
|
|
atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_entropy_float,
|
|
gt_entropy_float,
|
|
rtol=tolerance,
|
|
atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_entropy_float_np_broadcast,
|
|
gt_entropy_float_np_broadcast,
|
|
rtol=tolerance,
|
|
atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_entropy_np, gt_entropy, rtol=tolerance, atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_entropy_variable, gt_entropy, rtol=tolerance, atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_lp_float_np_broadcast,
|
|
gt_lp_float_np_broadcast,
|
|
rtol=tolerance,
|
|
atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_lp_np, gt_lp, rtol=tolerance, atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_lp_variable, gt_lp, rtol=tolerance, atol=tolerance)
|
|
|
|
def test_categorical_distribution(self,
|
|
batch_size=2,
|
|
dims=3,
|
|
tolerance=1e-6):
|
|
test_program = fluid.Program()
|
|
|
|
logits_np = np.random.randn(batch_size, dims).astype('float32')
|
|
other_logits_np = np.random.randn(batch_size, dims).astype('float32')
|
|
|
|
with fluid.program_guard(test_program):
|
|
logits = layers.data(name='logits', shape=[dims], dtype='float32')
|
|
other_logits = layers.data(
|
|
name='other_logits', shape=[dims], dtype='float32')
|
|
|
|
categorical_np = Categorical(logits_np)
|
|
other_categorical_np = Categorical(other_logits_np)
|
|
|
|
entropy_np = categorical_np.entropy()
|
|
kl_np = categorical_np.kl_divergence(other_categorical_np)
|
|
|
|
self.executor.run(fluid.default_main_program())
|
|
|
|
np_categorical = CategoricalNumpy(logits_np)
|
|
np_other_categorical = CategoricalNumpy(other_logits_np)
|
|
gt_entropy_np = np_categorical.entropy()
|
|
gt_kl_np = np_categorical.kl_divergence(np_other_categorical)
|
|
|
|
# result calculated by paddle
|
|
[output_entropy_np,
|
|
output_kl_np] = self.executor.run(program=test_program,
|
|
feed={'logits': logits_np},
|
|
fetch_list=[entropy_np, kl_np])
|
|
np.testing.assert_allclose(
|
|
output_entropy_np, gt_entropy_np, rtol=tolerance, atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_kl_np, gt_kl_np, rtol=tolerance, atol=tolerance)
|
|
|
|
def test_multivariateNormalDiag_distribution(self,
|
|
batch_size=2,
|
|
tolerance=1e-6):
|
|
test_program = fluid.Program()
|
|
|
|
loc_np = np.random.random(batch_size, ).astype('float32')
|
|
scale_np = np.diag(np.random.random(batch_size, )).astype('float32')
|
|
other_loc_np = np.random.random(batch_size, ).astype('float32')
|
|
other_scale_np = np.diag(np.random.random(batch_size, )).astype(
|
|
'float32')
|
|
|
|
with fluid.program_guard(test_program):
|
|
loc = layers.data(
|
|
name='loc',
|
|
shape=[batch_size, ],
|
|
dtype='float32',
|
|
append_batch_size=False)
|
|
scale = layers.data(
|
|
name='scale',
|
|
shape=[batch_size, batch_size],
|
|
dtype='float32',
|
|
append_batch_size=False)
|
|
other_loc = layers.data(
|
|
name='other_loc',
|
|
shape=[batch_size, ],
|
|
dtype='float32',
|
|
append_batch_size=False)
|
|
other_scale = layers.data(
|
|
name='other_scale',
|
|
shape=[batch_size, batch_size],
|
|
dtype='float32',
|
|
append_batch_size=False)
|
|
|
|
multivariate_np = MultivariateNormalDiag(loc, scale)
|
|
other_multivariate_np = MultivariateNormalDiag(other_loc,
|
|
other_scale)
|
|
|
|
entropy_np = multivariate_np.entropy()
|
|
other_entropy_np = other_multivariate_np.entropy()
|
|
kl_np = multivariate_np.kl_divergence(other_multivariate_np)
|
|
|
|
self.executor.run(fluid.default_main_program())
|
|
|
|
np_multivariate = MultivariateNormalDiagNumpy(loc_np, scale_np)
|
|
np_other_multivariate = MultivariateNormalDiagNumpy(other_loc_np,
|
|
other_scale_np)
|
|
gt_entropy_np = np_multivariate.entropy()
|
|
gt_kl_np = np_multivariate.kl_divergence(np_other_multivariate)
|
|
|
|
# result calculated by paddle
|
|
[output_entropy_np,
|
|
output_kl_np] = self.executor.run(program=test_program,
|
|
feed={
|
|
'loc': loc_np,
|
|
'scale': scale_np,
|
|
'other_loc': other_loc_np,
|
|
'other_scale': other_scale_np
|
|
},
|
|
fetch_list=[entropy_np, kl_np])
|
|
np.testing.assert_allclose(
|
|
output_entropy_np, gt_entropy_np, rtol=tolerance, atol=tolerance)
|
|
np.testing.assert_allclose(
|
|
output_kl_np, gt_kl_np, rtol=tolerance, atol=tolerance)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|