You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
163 lines
6.5 KiB
163 lines
6.5 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testcases for Downpour."""
|
|
|
|
from __future__ import print_function
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import os
|
|
import signal
|
|
import subprocess
|
|
import time
|
|
import unittest
|
|
import sys
|
|
from op_test import OpTest
|
|
from paddle.fluid.trainer_desc import DistMultiTrainer
|
|
from paddle.fluid.device_worker import DownpourSGD
|
|
from paddle.fluid.incubate.fleet.parameter_server.pslib.node import DownpourWorker
|
|
from google.protobuf import text_format
|
|
import paddle.fluid.incubate.fleet.parameter_server.pslib.ps_pb2 as pslib
|
|
|
|
|
|
class TestListenAndServOp(unittest.TestCase):
|
|
"""TestListenAndServOp."""
|
|
|
|
def setUp(self):
|
|
pass
|
|
|
|
def test_device_work_use_cvm(self):
|
|
"""test device work use_cvm."""
|
|
if sys.platform == 'win32' or sys.platform == 'sys.platform':
|
|
pass
|
|
else:
|
|
print(sys.platform)
|
|
cmd = "wget --no-check-certificate https://pslib.bj.bcebos.com/fleet_desc.prototxt"
|
|
os.system(cmd)
|
|
x = fluid.layers.data(name='x', shape=[1], dtype='int64')
|
|
x_emb = fluid.layers.embedding(
|
|
input=x, size=[1, 2], is_distributed=True)
|
|
y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
|
|
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
|
|
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
|
|
avg_cost = fluid.layers.mean(cost)
|
|
|
|
ps_param = pslib.PSParameter()
|
|
with open("fleet_desc.prototxt") as f:
|
|
text_format.Merge(f.read(), ps_param)
|
|
fleet_desc = ps_param
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
opt_info = {}
|
|
main_program = fluid.default_main_program()
|
|
program_id = str(id(avg_cost.block.program))
|
|
program_configs = {}
|
|
program_configs[program_id] = {
|
|
"pull_sparse": [0],
|
|
"push_sparse": [0]
|
|
}
|
|
program_configs[program_id]["pull_dense"] = [1]
|
|
program_configs[program_id]["push_dense"] = [1]
|
|
|
|
worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
|
|
opt_info["program_configs"] = program_configs
|
|
opt_info["trainer"] = "DistMultiTrainer"
|
|
opt_info["device_worker"] = "DownpourSGD"
|
|
opt_info["optimizer"] = "DownpourSGD"
|
|
opt_info["fleet_desc"] = ps_param
|
|
opt_info["worker_skipped_ops"] = worker_skipped_ops
|
|
opt_info["use_cvm"] = True
|
|
opt_info["scale_datanorm"] = -1
|
|
opt_info["dump_slot"] = False
|
|
opt_info["stat_var_names"] = []
|
|
worker = DownpourWorker(None)
|
|
worker.get_desc().CopyFrom(ps_param.trainer_param[0])
|
|
opt_info["program_id_to_worker"] = {program_id: worker}
|
|
|
|
main_program._fleet_opt = opt_info
|
|
trainer = DistMultiTrainer()
|
|
trainer._set_program(main_program)
|
|
device_worker = DownpourSGD()
|
|
device_worker._set_fleet_desc(fleet_desc)
|
|
trainer._set_device_worker(device_worker)
|
|
trainer._set_fleet_desc(fleet_desc)
|
|
trainer._gen_trainer_desc()
|
|
cmd = "rm fleet_desc.prototxt*"
|
|
os.system(cmd)
|
|
|
|
def test_device_work(self):
|
|
"""test devicve worker."""
|
|
if sys.platform == 'win32' or sys.platform == 'sys.platform':
|
|
pass
|
|
else:
|
|
print(sys.platform)
|
|
cmd = "wget --no-check-certificate https://pslib.bj.bcebos.com/fleet_desc.prototxt"
|
|
os.system(cmd)
|
|
x = fluid.layers.data(name='x', shape=[1], dtype='int64')
|
|
x_emb = fluid.layers.embedding(
|
|
input=x, size=[1, 2], is_distributed=True)
|
|
y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
|
|
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
|
|
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
|
|
avg_cost = fluid.layers.mean(cost)
|
|
|
|
ps_param = pslib.PSParameter()
|
|
with open("fleet_desc.prototxt") as f:
|
|
text_format.Merge(f.read(), ps_param)
|
|
fleet_desc = ps_param
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
opt_info = {}
|
|
main_program = fluid.default_main_program()
|
|
program_id = str(id(avg_cost.block.program))
|
|
program_configs = {}
|
|
program_configs[program_id] = {
|
|
"pull_sparse": [0],
|
|
"push_sparse": [0]
|
|
}
|
|
program_configs[program_id]["pull_dense"] = [1]
|
|
program_configs[program_id]["push_dense"] = [1]
|
|
|
|
worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
|
|
opt_info["program_configs"] = program_configs
|
|
opt_info["trainer"] = "DistMultiTrainer"
|
|
opt_info["device_worker"] = "DownpourSGD"
|
|
opt_info["optimizer"] = "DownpourSGD"
|
|
opt_info["fleet_desc"] = ps_param
|
|
opt_info["worker_skipped_ops"] = worker_skipped_ops
|
|
opt_info["use_cvm"] = False
|
|
opt_info["scale_datanorm"] = -1
|
|
opt_info["dump_slot"] = False
|
|
opt_info["stat_var_names"] = []
|
|
worker = DownpourWorker(None)
|
|
worker.get_desc().CopyFrom(ps_param.trainer_param[0])
|
|
opt_info["program_id_to_worker"] = {program_id: worker}
|
|
|
|
main_program._fleet_opt = opt_info
|
|
trainer = DistMultiTrainer()
|
|
trainer._set_program(main_program)
|
|
device_worker = DownpourSGD()
|
|
device_worker._set_fleet_desc(fleet_desc)
|
|
trainer._set_device_worker(device_worker)
|
|
trainer._set_fleet_desc(fleet_desc)
|
|
trainer._gen_trainer_desc()
|
|
cmd = "rm fleet_desc.prototxt*"
|
|
os.system(cmd)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|