You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_downpoursgd.py

163 lines
6.5 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testcases for Downpour."""
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import os
import signal
import subprocess
import time
import unittest
import sys
from op_test import OpTest
from paddle.fluid.trainer_desc import DistMultiTrainer
from paddle.fluid.device_worker import DownpourSGD
from paddle.fluid.incubate.fleet.parameter_server.pslib.node import DownpourWorker
from google.protobuf import text_format
import paddle.fluid.incubate.fleet.parameter_server.pslib.ps_pb2 as pslib
class TestListenAndServOp(unittest.TestCase):
"""TestListenAndServOp."""
def setUp(self):
pass
def test_device_work_use_cvm(self):
"""test device work use_cvm."""
if sys.platform == 'win32' or sys.platform == 'sys.platform':
pass
else:
print(sys.platform)
cmd = "wget --no-check-certificate https://pslib.bj.bcebos.com/fleet_desc.prototxt"
os.system(cmd)
x = fluid.layers.data(name='x', shape=[1], dtype='int64')
x_emb = fluid.layers.embedding(
input=x, size=[1, 2], is_distributed=True)
y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
ps_param = pslib.PSParameter()
with open("fleet_desc.prototxt") as f:
text_format.Merge(f.read(), ps_param)
fleet_desc = ps_param
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
opt_info = {}
main_program = fluid.default_main_program()
program_id = str(id(avg_cost.block.program))
program_configs = {}
program_configs[program_id] = {
"pull_sparse": [0],
"push_sparse": [0]
}
program_configs[program_id]["pull_dense"] = [1]
program_configs[program_id]["push_dense"] = [1]
worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
opt_info["program_configs"] = program_configs
opt_info["trainer"] = "DistMultiTrainer"
opt_info["device_worker"] = "DownpourSGD"
opt_info["optimizer"] = "DownpourSGD"
opt_info["fleet_desc"] = ps_param
opt_info["worker_skipped_ops"] = worker_skipped_ops
opt_info["use_cvm"] = True
opt_info["scale_datanorm"] = -1
opt_info["dump_slot"] = False
opt_info["stat_var_names"] = []
worker = DownpourWorker(None)
worker.get_desc().CopyFrom(ps_param.trainer_param[0])
opt_info["program_id_to_worker"] = {program_id: worker}
main_program._fleet_opt = opt_info
trainer = DistMultiTrainer()
trainer._set_program(main_program)
device_worker = DownpourSGD()
device_worker._set_fleet_desc(fleet_desc)
trainer._set_device_worker(device_worker)
trainer._set_fleet_desc(fleet_desc)
trainer._gen_trainer_desc()
cmd = "rm fleet_desc.prototxt*"
os.system(cmd)
def test_device_work(self):
"""test devicve worker."""
if sys.platform == 'win32' or sys.platform == 'sys.platform':
pass
else:
print(sys.platform)
cmd = "wget --no-check-certificate https://pslib.bj.bcebos.com/fleet_desc.prototxt"
os.system(cmd)
x = fluid.layers.data(name='x', shape=[1], dtype='int64')
x_emb = fluid.layers.embedding(
input=x, size=[1, 2], is_distributed=True)
y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
ps_param = pslib.PSParameter()
with open("fleet_desc.prototxt") as f:
text_format.Merge(f.read(), ps_param)
fleet_desc = ps_param
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
opt_info = {}
main_program = fluid.default_main_program()
program_id = str(id(avg_cost.block.program))
program_configs = {}
program_configs[program_id] = {
"pull_sparse": [0],
"push_sparse": [0]
}
program_configs[program_id]["pull_dense"] = [1]
program_configs[program_id]["push_dense"] = [1]
worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
opt_info["program_configs"] = program_configs
opt_info["trainer"] = "DistMultiTrainer"
opt_info["device_worker"] = "DownpourSGD"
opt_info["optimizer"] = "DownpourSGD"
opt_info["fleet_desc"] = ps_param
opt_info["worker_skipped_ops"] = worker_skipped_ops
opt_info["use_cvm"] = False
opt_info["scale_datanorm"] = -1
opt_info["dump_slot"] = False
opt_info["stat_var_names"] = []
worker = DownpourWorker(None)
worker.get_desc().CopyFrom(ps_param.trainer_param[0])
opt_info["program_id_to_worker"] = {program_id: worker}
main_program._fleet_opt = opt_info
trainer = DistMultiTrainer()
trainer._set_program(main_program)
device_worker = DownpourSGD()
device_worker._set_fleet_desc(fleet_desc)
trainer._set_device_worker(device_worker)
trainer._set_fleet_desc(fleet_desc)
trainer._gen_trainer_desc()
cmd = "rm fleet_desc.prototxt*"
os.system(cmd)
if __name__ == "__main__":
unittest.main()