You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_imperative_selected_ro...

134 lines
4.8 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.nn import Embedding
from paddle.fluid.optimizer import SGDOptimizer
import numpy as np
import paddle.fluid.core as core
class SimpleNet(fluid.Layer):
def __init__(self, vocab_size, hidden_size, dtype):
super(SimpleNet, self).__init__()
self.emb = fluid.dygraph.Embedding(
size=[vocab_size, hidden_size],
dtype=dtype,
param_attr='emb.w',
is_sparse=True)
def forward(self, input):
input_emb = self.emb(input)
return input_emb, self.emb
class TestSimpleNet(unittest.TestCase):
def test_selectedrows_gradient1(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for place in places:
for dtype in ["float32", "float64"]:
for sort_sum_gradient in [True, False]:
with fluid.dygraph.guard(place):
backward_strategy = fluid.dygraph.BackwardStrategy()
backward_strategy.sort_sum_gradient = sort_sum_gradient
adam = SGDOptimizer(learning_rate=0.001)
# grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(5.0)
input_word = np.array([[1, 2], [2, 1]]).astype('int64')
input = to_variable(input_word)
simplenet = SimpleNet(20, 32, dtype)
input_emb, emb = simplenet(input)
try:
emb._w.gradient()
except ValueError as e:
pass
try:
input_emb.gradient()
except ValueError as e:
pass
input_emb.backward(backward_strategy)
adam.minimize(input_emb) # grad_clip=grad_clip
emb._w.gradient()
emb.clear_gradients()
try:
emb._w.gradient()
except ValueError as e:
pass
input_emb.clear_gradient()
try:
input_emb.gradient()
except ValueError as e:
pass
def test_selectedrows_gradient2(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for place in places:
for sort_sum_gradient in [True, False]:
with fluid.dygraph.guard(place):
backward_strategy = fluid.dygraph.BackwardStrategy()
backward_strategy.sort_sum_gradient = sort_sum_gradient
adam = SGDOptimizer(learning_rate=0.001)
grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(
5.0)
input_word = np.array([[1, 2], [2, 1]]).astype('int64')
input = to_variable(input_word)
simplenet = SimpleNet(20, 32, "float32")
input_emb, emb = simplenet(input)
try:
emb._w.gradient()
except ValueError as e:
pass
try:
input_emb.gradient()
except ValueError as e:
pass
input_emb.backward(backward_strategy)
adam.minimize(input_emb, grad_clip=grad_clip)
emb._w.gradient()
emb.clear_gradients()
try:
emb._w.gradient()
except ValueError as e:
pass
input_emb.clear_gradient()
try:
input_emb.gradient()
except ValueError as e:
pass
if __name__ == '__main__':
unittest.main()