You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_mean_op.py

78 lines
2.5 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
class TestMeanOp(OpTest):
def setUp(self):
self.op_type = "mean"
self.dtype = np.float64
self.init_dtype_type()
self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)}
self.outputs = {'Out': np.mean(self.inputs["X"])}
def init_dtype_type(self):
pass
def test_check_output(self):
self.check_output()
def test_checkout_grad(self):
self.check_grad(['X'], 'Out')
class TestMeanOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
# The input type of mean_op must be Variable.
input1 = 12
self.assertRaises(TypeError, fluid.layers.mean, input1)
# The input dtype of mean_op must be float16, float32, float64.
input2 = fluid.layers.data(
name='input2', shape=[12, 10], dtype="int32")
self.assertRaises(TypeError, fluid.layers.mean, input2)
input3 = fluid.layers.data(
name='input3', shape=[4], dtype="float16")
fluid.layers.softmax(input3)
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestFP16MeanOp(TestMeanOp):
def init_dtype_type(self):
self.dtype = np.float16
def test_check_output(self):
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=2e-3)
def test_checkout_grad(self):
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_grad_with_place(
place, ['X'], 'Out', max_relative_error=0.8)
if __name__ == "__main__":
unittest.main()