You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_program_prune_backward.py

213 lines
8.0 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import contextlib
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.core as core
from simple_nets import init_data, simple_fc_net, fc_with_batchnorm
import seresnext_net
from test_parallel_executor_transformer import transformer, get_feed_data_reader
from fake_reader import fake_imdb_reader
def lstm_net(use_feed):
dict_dim = 5147
emb_dim = 128
hid_dim = 128
hid_dim2 = 96
class_dim = 2
emb_lr = 30.0
data = fluid.layers.data(
name="words", shape=[1], dtype="int64", lod_level=1)
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
emb = fluid.layers.embedding(
input=data,
size=[dict_dim, emb_dim],
param_attr=fluid.ParamAttr(learning_rate=emb_lr))
fc0 = fluid.layers.fc(input=emb, size=hid_dim * 4)
lstm_h, c = fluid.layers.dynamic_lstm(
input=fc0, size=hid_dim * 4, is_reverse=False)
lstm_max = fluid.layers.sequence_pool(input=lstm_h, pool_type='max')
lstm_max_tanh = fluid.layers.tanh(lstm_max)
fc1 = fluid.layers.fc(input=lstm_max_tanh, size=hid_dim2, act='tanh')
prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
return avg_cost
def simple_fc_net_with_accuracy(use_feed):
img = fluid.layers.data(name='image', shape=[784], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
hidden = img
for _ in range(4):
hidden = fluid.layers.fc(
hidden,
size=200,
act='relu',
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=1.0)))
prediction = fluid.layers.fc(hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.mean(loss)
accuracy_out = fluid.layers.accuracy(input=prediction, label=label, k=5)
return loss
class TestProgramPruneBackward(unittest.TestCase):
def program_compare(self, program_a, program_b):
assert isinstance(
program_a, fluid.framework.
Program), "The first argument should be fluid.framework.Program."
assert isinstance(
program_b, fluid.framework.
Program), "The second argument should be fluid.framework Program."
self.assertEqual(len(program_a.blocks), len(program_b.blocks))
for idx in range(len(program_a.blocks)):
block_a = program_a.blocks[idx]
block_b = program_b.blocks[idx]
self.assertEqual(len(block_a.ops), len(block_b.ops))
self.assertEqual(len(block_a.vars), len(block_b.vars))
for op_idx in range(len(block_a.ops)):
self.assertEqual(block_a.ops[op_idx].type,
block_b.ops[op_idx].type)
for var_key in list(block_a.vars.keys()):
self.assertTrue(block_b.has_var(var_key))
def check_prune_correctness(self, method, feed_dict, optimizer):
loss = method(use_feed=False)
main_program = fluid.default_main_program()
test_prog_orig = main_program.clone(for_test=True)
optimizer().minimize(loss)
test_prog_prune = main_program.clone(for_test=True)
self.program_compare(test_prog_orig, test_prog_prune)
place = core.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
loss_data_prune, = exe.run(test_prog_prune,
feed=feed_dict,
fetch_list=[loss.name])
loss_data_orig, = exe.run(test_prog_orig,
feed=feed_dict,
fetch_list=[loss.name])
self.assertEqual(loss_data_orig, loss_data_prune)
def test_simple_fc_net(self):
def optimizer():
optimizer = fluid.optimizer.SGD(
learning_rate=0.001,
regularization=fluid.regularizer.L2Decay(1e-4))
return optimizer
with self.program_scope_guard():
img, label = init_data()
self.check_prune_correctness(
method=simple_fc_net,
feed_dict={"image": img,
"label": label},
optimizer=optimizer)
def test_simple_fc_net_with_accuracy(self):
def optimizer():
optimizer = fluid.optimizer.SGD(
learning_rate=0.001,
regularization=fluid.regularizer.L2Decay(1e-4))
return optimizer
with self.program_scope_guard():
img, label = init_data()
self.check_prune_correctness(
method=simple_fc_net_with_accuracy,
feed_dict={"image": img,
"label": label},
optimizer=optimizer)
def test_batchnorm_fc(self):
def optimizer():
optimizer = fluid.optimizer.SGD(
learning_rate=0.001,
regularization=fluid.regularizer.L2Decay(1e-4))
return optimizer
with self.program_scope_guard():
img, label = init_data()
self.check_prune_correctness(
method=fc_with_batchnorm,
feed_dict={"image": img,
"label": label},
optimizer=optimizer)
def test_seresnet(self):
with self.program_scope_guard():
self.check_prune_correctness(
method=seresnext_net.model,
feed_dict=seresnext_net.feed_dict(use_cuda=False),
optimizer=seresnext_net.optimizer)
def test_transformer(self):
def optimizer():
optimizer = fluid.optimizer.Adam(
learning_rate=0.001,
regularization=fluid.regularizer.L2Decay(1e-4))
return optimizer
with self.program_scope_guard():
# the program argument is used to distinguish Program and CompiledProgram
feed_dict = get_feed_data_reader().get_next(
fluid.Executor(core.CPUPlace()), fluid.default_main_program())
self.check_prune_correctness(
method=transformer, feed_dict=feed_dict, optimizer=optimizer)
def test_lstm(self):
def optimizer():
optimizer = fluid.optimizer.Adagrad(
learning_rate=0.001,
regularization=fluid.regularizer.L2Decay(1e-4))
return optimizer
with self.program_scope_guard():
word_dict_size = 5147
reader = fake_imdb_reader(word_dict_size, 1)
data = fluid.layers.data(
name="words", shape=[1], dtype="int64", lod_level=1)
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
feeder = fluid.DataFeeder(
feed_list=[data, label], place=core.CPUPlace())
feed_data = feeder.feed(reader())
self.check_prune_correctness(
method=lstm_net, feed_dict=feed_data, optimizer=optimizer)
@contextlib.contextmanager
def program_scope_guard(self):
prog = fluid.Program()
startup_prog = fluid.Program()
scope = fluid.core.Scope()
with fluid.scope_guard(scope):
with fluid.program_guard(prog, startup_prog):
yield
if __name__ == '__main__':
unittest.main()