You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_reshape_op.py

341 lines
11 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
# situation 1: have shape( list, no tensor), no actual shape(Tensor)
class TestReshapeOp(OpTest):
def setUp(self):
self.init_data()
self.op_type = "reshape2"
self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
self.attrs = {"shape": self.new_shape}
self.outputs = {
"Out": self.inputs["X"].reshape(self.infered_shape),
'XShape': np.random.random(self.ori_shape).astype("float32")
}
def init_data(self):
self.ori_shape = (2, 60)
self.new_shape = (12, 10)
self.infered_shape = (12, 10)
def test_check_output(self):
self.check_output(no_check_set=['XShape'])
def test_check_grad(self):
self.check_grad(["X"], "Out")
class TestReshapeOpDimInfer1(TestReshapeOp):
def init_data(self):
self.ori_shape = (5, 25)
self.new_shape = (5, -1, 5)
self.infered_shape = (5, -1, 5)
class TestReshapeOpDimInfer2(TestReshapeOp):
def init_data(self):
self.ori_shape = (2, 2, 6)
self.new_shape = (2, 0, 3, -1)
self.infered_shape = (2, 2, 3, -1)
# situation 2: have shape(list, no tensor), have actual shape(Tensor)
class TestReshapeOpWithInputShape(OpTest):
def setUp(self):
self.init_data()
self.op_type = "reshape2"
self.inputs = {
"X": np.random.random(self.ori_shape).astype("float32"),
"Shape": np.array(
self.actual_shape, dtype="int32")
}
self.attrs = {"shape": self.new_shape}
self.outputs = {
"Out": self.inputs["X"].reshape(self.actual_shape),
'XShape': np.random.random(self.ori_shape).astype("float32")
}
def init_data(self):
self.ori_shape = (6, 5)
self.new_shape = (0, -1, 5)
self.actual_shape = (2, 3, 5)
def test_check_output(self):
self.check_output(no_check_set=['XShape'])
def test_check_grad(self):
self.check_grad(["X"], "Out")
# Situation 3: have shape(list, have tensor), no actual shape(Tensor)
class TestReshapeOp_attr_ShapeTensor(OpTest):
def setUp(self):
self.init_data()
self.op_type = "reshape2"
shape_tensor = []
for index, ele in enumerate(self.new_shape):
shape_tensor.append(("x" + str(index), np.ones(
(1)).astype('int32') * ele))
self.inputs = {
"X": np.random.random(self.ori_shape).astype("float32"),
'ShapeTensor': shape_tensor
}
self.attrs = {'shape': self.shape}
self.outputs = {
"Out": self.inputs["X"].reshape(self.infered_shape),
'XShape': np.random.random(self.ori_shape).astype("float32")
}
def init_data(self):
self.ori_shape = (2, 25)
self.new_shape = (5, 10)
self.infered_shape = (5, 10)
self.shape = (-1, -1)
def test_check_output(self):
self.check_output(no_check_set=['XShape'])
def test_check_grad(self):
self.check_grad(["X"], "Out")
class TestReshapeOpDimInfer1_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
def init_data(self):
self.ori_shape = (5, 10)
self.new_shape = (5, -1, 5)
self.infered_shape = (5, -1, 5)
self.shape = (5, -1, -1)
class TestReshapeOpDimInfer2_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
def init_data(self):
self.ori_shape = (2, 2, 6)
self.new_shape = (2, 0, 3, -1)
self.infered_shape = (2, 2, 3, -1)
self.shape = (2, 0, 3, -1)
# Situation 4: have shape(Tensor), no actual shape(Tensor)
class TestReshapeOp_attr_OnlyShape(OpTest):
def setUp(self):
self.init_data()
self.op_type = "reshape2"
self.inputs = {
"X": np.random.random(self.ori_shape).astype("float32"),
"Shape": np.array(
self.new_shape, dtype="int32")
}
self.attrs = {}
self.outputs = {
"Out": self.inputs["X"].reshape(self.infered_shape),
'XShape': np.random.random(self.ori_shape).astype("float32")
}
def init_data(self):
self.ori_shape = (2, 25)
self.new_shape = (5, 10)
self.infered_shape = (5, 10)
def test_check_output(self):
self.check_output(no_check_set=['XShape'])
def test_check_grad(self):
self.check_grad(["X"], "Out")
class TestReshapeOpDimInfer1_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
def init_data(self):
self.ori_shape = (5, 10)
self.new_shape = (5, -1, 5)
self.infered_shape = (5, -1, 5)
self.shape = (5, -1, -1)
class TestReshapeOpDimInfer2_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
def init_data(self):
self.ori_shape = (2, 2, 6)
self.new_shape = (2, 0, 3, -1)
self.infered_shape = (2, 2, 3, -1)
self.shape = (2, 0, 3, -1)
# test int8 data type on CPU
class TestReshapeInt8Op(OpTest):
def setUp(self):
self.init_dtype()
self.init_data()
self.use_mkldnn = True
self._cpu_only = True
self.op_type = "reshape2"
input = np.random.randint(0, 127, self.ori_shape).astype(self.dtype)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
self.attrs = {
'shape': self.new_shape,
'use_mkldnn': self.use_mkldnn,
}
self.outputs = {
"Out": self.inputs["X"].reshape(self.infered_shape),
'XShape': np.random.random(self.ori_shape).astype(np.float32)
}
def init_dtype(self):
self.dtype = np.int8
def init_data(self):
self.ori_shape = (2, 2, 6)
self.new_shape = (2, 0, 3, -1)
self.infered_shape = (2, 2, 3, -1)
def test_check_output(self):
self.check_output_with_place(
fluid.core.CPUPlace(), atol=1e-5, no_check_set=['XShape'])
def test_check_grad(self):
pass
# test unt8 data type on CPU
class TestReshapeUint8Op(TestReshapeInt8Op):
def init_dtype(self):
self.dtype = np.uint8
# Test python API
class TestReshapeAPI(unittest.TestCase):
# situation 1: have shape( list, no tensor), no actual shape(Tensor)
def test_1(self):
input = np.random.random([2, 25]).astype("float32")
shape = [2, 5, 5]
positive_five = fluid.layers.fill_constant([1], "int32", 5)
x = fluid.layers.data(
name="x", shape=[2, 25], append_batch_size=False, dtype="float32")
actual_shape = fluid.layers.data(
name="shape",
shape=[1, 3],
append_batch_size=False,
dtype="float32")
# situation 1: have shape( list, no tensor), no actual shape(Tensor)
out_1 = fluid.layers.reshape(x, shape)
# situation 2: have shape(list, no tensor), have actual shape(Tensor)
out_2 = fluid.layers.reshape(x, shape=shape, actual_shape=actual_shape)
# Situation 3: have shape(list, have tensor), no actual shape(Tensor)
out_3 = fluid.layers.reshape(x, shape=[positive_five, 10])
# Situation 4: have shape(Tensor), no actual shape(Tensor)
out_4 = fluid.layers.reshape(x, shape=actual_shape)
exe = fluid.Executor(place=fluid.CPUPlace())
res_1, res_2, res_3, res_4 = exe.run(
fluid.default_main_program(),
feed={"x": input,
"shape": np.array([2, 5, 5]).astype("int32")},
fetch_list=[out_1, out_2, out_3, out_4])
assert np.array_equal(res_1, input.reshape(shape))
assert np.array_equal(res_2, input.reshape(shape))
assert np.array_equal(res_3, input.reshape([5, 10]))
assert np.array_equal(res_4, input.reshape(shape))
# Test Input Error
class TestReshapeOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
# The x type of reshape_op must be Variable.
def test_x_type():
x1 = fluid.create_lod_tensor(
np.array([[-1]]), [[1]], fluid.CPUPlace())
fluid.layers.reshape(x1, shape=[1])
self.assertRaises(TypeError, test_x_type)
# The x dtype of reshape_op must be float16, float32, float64, int32 or int64.
def test_x_dtype():
x2 = fluid.layers.data(
name="x2",
shape=[2, 25],
append_batch_size=False,
dtype="bool")
fluid.layers.reshape(x2, shape=[2, 5, 5])
self.assertRaises(TypeError, test_x_dtype)
def test_x_dtype_float16():
x_float16 = fluid.layers.data(
name="x_float16",
shape=[2, 25],
append_batch_size=False,
dtype="float16")
fluid.layers.reshape(x_float16, shape=[2, 5, 5])
test_x_dtype_float16()
x3 = fluid.layers.data(
name="x3",
shape=[2, 25],
append_batch_size=False,
dtype="float32")
# The argument shape's type of reshape_op must be list, tuple or Variable.
def test_shape_type():
fluid.layers.reshape(x3, shape=1)
self.assertRaises(TypeError, test_shape_type)
# The argument actual_shape's type of reshape_op must be Variable or None.
def test_actual_shape_type():
fluid.layers.reshape(x3, shape=[25, 2], actual_shape=1)
self.assertRaises(TypeError, test_actual_shape_type)
# The argument shape have more than one -1.
def test_shape_1():
fluid.layers.reshape(x3, shape=[-1, -1, 5])
self.assertRaises(AssertionError, test_shape_1)
# The argument shape have element 0 whose index exceed the input dimension.
def test_shape_2():
fluid.layers.reshape(x3, [2, 5, 5, 0])
self.assertRaises(AssertionError, test_shape_2)
# The argument shape have more than one negtive value.
def test_shape_3():
fluid.layers.reshape(x3, [-1, -2, 5])
self.assertRaises(AssertionError, test_shape_3)
if __name__ == "__main__":
unittest.main()