You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
215 lines
7.8 KiB
215 lines
7.8 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy
|
|
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.layers as layers
|
|
import paddle.fluid.core as core
|
|
|
|
from paddle.fluid.executor import Executor
|
|
from paddle.fluid import framework
|
|
|
|
from paddle.fluid.layers.rnn import LSTMCell, GRUCell, RNNCell, BeamSearchDecoder, dynamic_decode
|
|
from paddle.fluid.layers import rnn as dynamic_rnn
|
|
from paddle.fluid import contrib
|
|
from paddle.fluid.contrib.layers import basic_lstm
|
|
|
|
import numpy as np
|
|
|
|
|
|
class EncoderCell(RNNCell):
|
|
def __init__(self, num_layers, hidden_size, dropout_prob=0.):
|
|
self.num_layers = num_layers
|
|
self.hidden_size = hidden_size
|
|
self.dropout_prob = dropout_prob
|
|
self.lstm_cells = []
|
|
for i in range(num_layers):
|
|
self.lstm_cells.append(LSTMCell(hidden_size))
|
|
|
|
def call(self, step_input, states):
|
|
new_states = []
|
|
for i in range(self.num_layers):
|
|
out, new_state = self.lstm_cells[i](step_input, states[i])
|
|
step_input = layers.dropout(
|
|
out, self.dropout_prob) if self.dropout_prob > 0 else out
|
|
new_states.append(new_state)
|
|
return step_input, new_states
|
|
|
|
@property
|
|
def state_shape(self):
|
|
return [cell.state_shape for cell in self.lstm_cells]
|
|
|
|
|
|
class DecoderCell(RNNCell):
|
|
def __init__(self, num_layers, hidden_size, dropout_prob=0.):
|
|
self.num_layers = num_layers
|
|
self.hidden_size = hidden_size
|
|
self.dropout_prob = dropout_prob
|
|
self.lstm_cells = []
|
|
for i in range(num_layers):
|
|
self.lstm_cells.append(LSTMCell(hidden_size))
|
|
|
|
def attention(self, hidden, encoder_output, encoder_padding_mask):
|
|
query = layers.fc(hidden,
|
|
size=encoder_output.shape[-1],
|
|
bias_attr=False)
|
|
attn_scores = layers.matmul(
|
|
layers.unsqueeze(query, [1]), encoder_output, transpose_y=True)
|
|
if encoder_padding_mask is not None:
|
|
attn_scores = layers.elementwise_add(attn_scores,
|
|
encoder_padding_mask)
|
|
attn_scores = layers.softmax(attn_scores)
|
|
attn_out = layers.squeeze(
|
|
layers.matmul(attn_scores, encoder_output), [1])
|
|
attn_out = layers.concat([attn_out, hidden], 1)
|
|
attn_out = layers.fc(attn_out, size=self.hidden_size, bias_attr=False)
|
|
return attn_out
|
|
|
|
def call(self,
|
|
step_input,
|
|
states,
|
|
encoder_output,
|
|
encoder_padding_mask=None):
|
|
lstm_states, input_feed = states
|
|
new_lstm_states = []
|
|
step_input = layers.concat([step_input, input_feed], 1)
|
|
for i in range(self.num_layers):
|
|
out, new_lstm_state = self.lstm_cells[i](step_input, lstm_states[i])
|
|
step_input = layers.dropout(
|
|
out, self.dropout_prob) if self.dropout_prob > 0 else out
|
|
new_lstm_states.append(new_lstm_state)
|
|
out = self.attention(step_input, encoder_output, encoder_padding_mask)
|
|
return out, [new_lstm_states, out]
|
|
|
|
|
|
class TestDynamicDecode(unittest.TestCase):
|
|
def setUp(self):
|
|
self.batch_size = 4
|
|
self.input_size = 16
|
|
self.hidden_size = 16
|
|
self.seq_len = 4
|
|
|
|
def test_run(self):
|
|
start_token = 0
|
|
end_token = 1
|
|
src_vocab_size = 10
|
|
trg_vocab_size = 10
|
|
num_layers = 1
|
|
hidden_size = self.hidden_size
|
|
beam_size = 8
|
|
max_length = self.seq_len
|
|
|
|
src = layers.data(name="src", shape=[-1, 1], dtype='int64')
|
|
src_len = layers.data(name="src_len", shape=[-1], dtype='int64')
|
|
|
|
trg = layers.data(name="trg", shape=[-1, 1], dtype='int64')
|
|
trg_len = layers.data(name="trg_len", shape=[-1], dtype='int64')
|
|
|
|
src_embeder = lambda x: fluid.embedding(
|
|
x,
|
|
size=[src_vocab_size, hidden_size],
|
|
param_attr=fluid.ParamAttr(name="src_embedding"))
|
|
|
|
trg_embeder = lambda x: fluid.embedding(
|
|
x,
|
|
size=[trg_vocab_size, hidden_size],
|
|
param_attr=fluid.ParamAttr(name="trg_embedding"))
|
|
|
|
# use basic_lstm
|
|
encoder_cell = EncoderCell(num_layers, hidden_size)
|
|
encoder_output, encoder_final_state = dynamic_rnn(
|
|
cell=encoder_cell,
|
|
inputs=src_embeder(src),
|
|
sequence_length=src_len,
|
|
is_reverse=False)
|
|
|
|
src_mask = layers.sequence_mask(
|
|
src_len, maxlen=layers.shape(src)[1], dtype='float32')
|
|
encoder_padding_mask = (src_mask - 1.0) * 1000000000
|
|
encoder_padding_mask = layers.unsqueeze(encoder_padding_mask, [1])
|
|
|
|
decoder_cell = DecoderCell(num_layers, hidden_size)
|
|
decoder_initial_states = [
|
|
encoder_final_state, decoder_cell.get_initial_states(
|
|
batch_ref=encoder_output, shape=[hidden_size])
|
|
]
|
|
|
|
decoder_output, _ = dynamic_rnn(
|
|
cell=decoder_cell,
|
|
inputs=trg_embeder(trg),
|
|
initial_states=decoder_initial_states,
|
|
sequence_length=None,
|
|
encoder_output=encoder_output,
|
|
encoder_padding_mask=encoder_padding_mask)
|
|
|
|
output_layer = lambda x: layers.fc(x,
|
|
size=trg_vocab_size,
|
|
num_flatten_dims=len(x.shape) - 1,
|
|
param_attr=fluid.ParamAttr(
|
|
name="output_w"),
|
|
bias_attr=False)
|
|
|
|
# inference
|
|
encoder_output = BeamSearchDecoder.tile_beam_merge_with_batch(
|
|
encoder_output, beam_size)
|
|
encoder_padding_mask = BeamSearchDecoder.tile_beam_merge_with_batch(
|
|
encoder_padding_mask, beam_size)
|
|
beam_search_decoder = BeamSearchDecoder(
|
|
decoder_cell,
|
|
start_token,
|
|
end_token,
|
|
beam_size,
|
|
embedding_fn=trg_embeder,
|
|
output_fn=output_layer)
|
|
outputs, _ = dynamic_decode(
|
|
beam_search_decoder,
|
|
inits=decoder_initial_states,
|
|
max_step_num=max_length,
|
|
encoder_output=encoder_output,
|
|
encoder_padding_mask=encoder_padding_mask)
|
|
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
else:
|
|
place = core.CPUPlace()
|
|
exe = Executor(place)
|
|
exe.run(framework.default_startup_program())
|
|
|
|
src_np = np.random.randint(
|
|
0, src_vocab_size, (self.batch_size, max_length)).astype('int64')
|
|
src_len_np = np.ones(self.batch_size, dtype='int64') * max_length
|
|
trg_np = np.random.randint(
|
|
0, trg_vocab_size, (self.batch_size, max_length)).astype('int64')
|
|
trg_len_np = np.ones(self.batch_size, dtype='int64') * max_length
|
|
|
|
out = exe.run(feed={
|
|
'src': src_np,
|
|
'src_len': src_len_np,
|
|
'trg': trg_np,
|
|
'trg_len': trg_len_np
|
|
},
|
|
fetch_list=[outputs])
|
|
|
|
self.assertTrue(out[0].shape[0] == self.batch_size)
|
|
self.assertTrue(out[0].shape[1] <= max_length + 1)
|
|
self.assertTrue(out[0].shape[2] == beam_size)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|