You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_split_op.py

284 lines
8.5 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard, core
class TestSplitOp(OpTest):
def setUp(self):
self._set_op_type()
self.dtype = self.get_dtype()
axis = 1
x = np.random.random((4, 5, 6)).astype(self.dtype)
out = np.split(x, [2, 3], axis)
self.inputs = {'X': x}
self.attrs = {'axis': axis, 'sections': [2, 1, 2]}
self.outputs = {'Out': [('out%d' % i, out[i]) \
for i in range(len(out))]}
def get_dtype(self):
return "float32"
def _set_op_type(self):
self.op_type = "split"
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], ['out0', 'out1', 'out2'])
# test with attr(num)
class TestSplitOp_2(OpTest):
def setUp(self):
self._set_op_type()
self.dtype = self.get_dtype()
self.init_data()
self.inputs = {'X': self.x}
self.attrs = {
'axis': self.axis,
'sections': self.sections,
'num': self.num
}
out = np.split(self.x, self.indices_or_sections, self.axis)
self.outputs = {'Out': [('out%d' % i, out[i]) \
for i in range(len(out))]}
def init_data(self):
self.x = np.random.random((4, 5, 6)).astype(self.dtype)
self.axis = 2
self.sections = []
self.num = 3
self.indices_or_sections = 3
def get_dtype(self):
return "float32"
def _set_op_type(self):
self.op_type = "split"
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], ['out0', 'out1', 'out2'])
# attr(axis) is Tensor
class TestSplitOp_AxisTensor(OpTest):
def setUp(self):
self._set_op_type()
self.dtype = self.get_dtype()
self.init_data()
self.inputs = {
'X': self.x,
'AxisTensor': np.array([self.axis]).astype("int32")
}
self.attrs = {'sections': self.sections, 'num': self.num}
out = np.split(self.x, self.indices_or_sections, self.axis)
self.outputs = {'Out': [('out%d' % i, out[i]) \
for i in range(len(out))]}
def init_data(self):
self.x = np.random.random((4, 5, 6)).astype(self.dtype)
self.axis = 2
self.sections = []
self.num = 3
self.indices_or_sections = 3
def get_dtype(self):
return "float32"
def _set_op_type(self):
self.op_type = "split"
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], ['out0', 'out1', 'out2'])
# attr(sections) is list containing Tensor
class TestSplitOp_SectionsTensor(OpTest):
def setUp(self):
self._set_op_type()
self.dtype = self.get_dtype()
self.init_data()
self.inputs = {'X': self.x}
sections_tensor = []
for index, ele in enumerate(self.sections):
sections_tensor.append(("x" + str(index), np.ones(
(1)).astype('int32') * ele))
self.inputs['SectionsTensorList'] = sections_tensor
self.attrs = {
'axis': self.axis,
'sections': self.sections_infer,
'num': self.num
}
out = np.split(self.x, self.indices_or_sections, self.axis)
self.outputs = {'Out': [('out%d' % i, out[i]) \
for i in range(len(out))]}
def init_data(self):
self.x = np.random.random((4, 5, 6)).astype(self.dtype)
self.axis = 1
self.sections = [2, 1, 2]
self.sections_infer = [-1, -1, -1]
self.num = 0
self.indices_or_sections = [2, 3]
def get_dtype(self):
return "float32"
def _set_op_type(self):
self.op_type = "split"
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], ['out0', 'out1', 'out2'])
class TestSplitOp_unk_section(OpTest):
def setUp(self):
self._set_op_type()
self.dtype = self.get_dtype()
self.init_data()
self.inputs = {'X': self.x}
self.attrs = {
'axis': self.axis,
'sections': self.sections,
'num': self.num
}
out = np.split(self.x, self.indices_or_sections, self.axis)
self.outputs = {'Out': [('out%d' % i, out[i]) \
for i in range(len(out))]}
def init_data(self):
self.x = np.random.random((4, 5, 6)).astype(self.dtype)
self.axis = 2
self.sections = [2, 1, -1]
self.num = 0
self.indices_or_sections = [2, 3]
def get_dtype(self):
return "float32"
def _set_op_type(self):
self.op_type = "split"
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], ['out0', 'out1', 'out2'])
class TestSplitByrefOp(OpTest):
def _set_op_type(self):
self.op_type = "split_byref"
#----------------Split Fp16----------------
def create_test_fp16(parent):
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestSplitFp16(parent):
def get_dtype(self):
return np.float16
def test_check_grad(self):
pass
cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
TestSplitFp16.__name__ = cls_name
globals()[cls_name] = TestSplitFp16
create_test_fp16(TestSplitOp)
class TestSplitAPI(unittest.TestCase):
def test_api(self):
input_1 = np.random.random([4, 5, 6]).astype("int32")
positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1)
positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1)
positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
x_1 = fluid.data(shape=[4, 5, 6], dtype='int32', name='x_1')
x_2 = fluid.data(shape=[4, 5, None], dtype='int32', name='x_2')
out_0, out_1, out_2 = fluid.layers.split(
input=x_1,
num_or_sections=[positive_2_int64, positive_1_int32, -1],
dim=positive_1_int64)
out_3, out_4, out_5 = fluid.layers.split(
input=x_1, num_or_sections=[2, 1, 2], dim=positive_1_int32)
fluid.layers.split(input=x_2, num_or_sections=2, dim=2)
exe = fluid.Executor(place=fluid.CPUPlace())
[res_0, res_1, res_2, res_3, res_4, res_5] = exe.run(
fluid.default_main_program(),
feed={"x_1": input_1,
"x_2": input_1},
fetch_list=[out_0, out_1, out_2, out_3, out_4, out_5])
out = np.split(input_1, [2, 3], 1)
assert np.array_equal(res_0, out[0])
assert np.array_equal(res_1, out[1])
assert np.array_equal(res_2, out[2])
assert np.array_equal(res_3, out[0])
assert np.array_equal(res_4, out[1])
assert np.array_equal(res_5, out[2])
class TestSplitOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
# The type of axis in split_op should be int or Variable.
def test_axis_type():
x6 = fluid.layers.data(shape=[4], dtype='float16', name='x3')
fluid.layers.split(input=x6, num_or_sections=2, dim=3.2)
self.assertRaises(TypeError, test_axis_type)
# The type of num_or_sections in split_op should be int, tuple or list.
def test_num_or_sections_type():
x6 = fluid.layers.data(shape=[4], dtype='float16', name='x4')
fluid.layers.split(input=x6, num_or_sections=2.1, dim=3)
self.assertRaises(TypeError, test_num_or_sections_type)
if __name__ == '__main__':
unittest.main()