You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
255 lines
7.9 KiB
255 lines
7.9 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <boost/variant.hpp>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
#include "paddle/framework/attr_checker.h"
|
|
#include "paddle/framework/op_desc.pb.h"
|
|
#include "paddle/framework/op_proto.pb.h"
|
|
#include "paddle/framework/scope.h"
|
|
#include "paddle/framework/tensor.h"
|
|
#include "paddle/platform/device_context.h"
|
|
#include "paddle/platform/place.h"
|
|
#include "paddle/utils/Error.h"
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
|
|
template <typename T>
|
|
struct EigenDeviceConverter;
|
|
|
|
template <>
|
|
struct EigenDeviceConverter<platform::CPUPlace> {
|
|
using EigenDeviceType = Eigen::DefaultDevice;
|
|
};
|
|
|
|
#ifndef PADDLE_ONLY_CPU
|
|
template <>
|
|
struct EigenDeviceConverter<platform::GPUPlace> {
|
|
using EigenDeviceType = Eigen::GpuDevice;
|
|
};
|
|
#endif
|
|
|
|
class OperatorBase;
|
|
using OperatorPtr = std::shared_ptr<OperatorBase>;
|
|
/**
|
|
* OperatorBase has the basic element that Net will call to do computation.
|
|
* Only CreateOperator from OpRegistry will new Operator directly. User
|
|
* should always construct a proto message OpDesc and call
|
|
* OpRegistry::CreateOp(op_desc) to get an Operator instance.
|
|
*/
|
|
class OperatorBase {
|
|
public:
|
|
/// If a variable is a empty variable, that name will be used.
|
|
static std::string EMPTY_VAR_NAME() { return "@EMPTY@"; }
|
|
|
|
/// If a variable is a temporary variable, that name will be set in Python,
|
|
/// but it will be convert to a unique name in scope after OpCreator.
|
|
static std::string TMP_VAR_NAME() { return "@TEMP@"; }
|
|
|
|
virtual ~OperatorBase() {}
|
|
|
|
template <typename T>
|
|
inline const T& GetAttr(const std::string& name) const {
|
|
PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
|
|
name);
|
|
return boost::get<T>(attrs_.at(name));
|
|
}
|
|
|
|
virtual std::string DebugString() const;
|
|
|
|
/// Init will be called after CreateOperator, you can put some initialization
|
|
/// logic here.
|
|
virtual void Init() {}
|
|
|
|
/// InferShape infer the size of Variables used by this Operator with
|
|
/// information inside scope
|
|
virtual void InferShape(const ScopePtr& scope) const = 0;
|
|
|
|
/// Net will call this function to Run an op.
|
|
virtual void Run(const ScopePtr& scope,
|
|
const platform::DeviceContext& dev_ctx) const = 0;
|
|
|
|
// Get a input with argument's name described in `op_proto`
|
|
const std::string& Input(const std::string& name) const;
|
|
// Get a input which has multiple variables.
|
|
// TODO add a vector_view to prevent memory copy.
|
|
std::vector<std::string> Inputs(const std::string& name) const;
|
|
// Get a output with argument's name described in `op_proto`
|
|
const std::string& Output(const std::string& name) const;
|
|
// Get an output which has multiple variables.
|
|
// TODO add a vector_view to prevent memory copy.
|
|
std::vector<std::string> Outputs(const std::string& name) const;
|
|
|
|
public:
|
|
std::string type_;
|
|
std::vector<std::string> inputs_;
|
|
std::vector<std::string> outputs_;
|
|
AttributeMap attrs_;
|
|
// store the arguments' offset described in op_desc.
|
|
std::shared_ptr<std::unordered_map<std::string, int>> in_out_idxs_;
|
|
};
|
|
|
|
class KernelContext {
|
|
public:
|
|
KernelContext(const OperatorBase* op, const std::shared_ptr<Scope>& scope,
|
|
const platform::DeviceContext& device_context)
|
|
: op_(*op), scope_(scope), device_context_(device_context) {}
|
|
|
|
const Variable* Input(int index) const {
|
|
return scope_->GetVariable(op_.inputs_[index]);
|
|
}
|
|
|
|
Variable* Output(int index) const {
|
|
return scope_->GetVariable(op_.outputs_[index]);
|
|
}
|
|
|
|
const Variable* Input(const std::string& name) const {
|
|
return scope_->GetVariable(op_.Input(name));
|
|
}
|
|
|
|
const Variable* Output(const std::string& name) const {
|
|
return scope_->GetVariable(op_.Output(name));
|
|
}
|
|
|
|
const std::vector<const Variable*> Inputs(const std::string& name) const {
|
|
auto names = op_.Inputs(name);
|
|
std::vector<const Variable*> res;
|
|
std::transform(
|
|
names.begin(), names.end(), res.begin(),
|
|
[this](const std::string& name) { return scope_->GetVariable(name); });
|
|
return res;
|
|
}
|
|
|
|
const std::vector<const Variable*> Outputs(const std::string& name) const {
|
|
auto names = op_.Outputs(name);
|
|
std::vector<const Variable*> res;
|
|
std::transform(
|
|
names.begin(), names.end(), res.begin(),
|
|
[this](const std::string& name) { return scope_->GetVariable(name); });
|
|
return res;
|
|
}
|
|
|
|
template <typename PlaceType,
|
|
typename DeviceType =
|
|
typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
|
|
DeviceType* GetEigenDevice() const;
|
|
|
|
platform::Place GetPlace() const { return device_context_.GetPlace(); }
|
|
|
|
const OperatorBase& op_;
|
|
const std::shared_ptr<Scope>& scope_;
|
|
const platform::DeviceContext& device_context_;
|
|
};
|
|
|
|
class OpKernel {
|
|
public:
|
|
/**
|
|
* KernelContext is the only parameter of Kernel Run function.
|
|
* Run will get input/output variables, state such as momentum and
|
|
* device resource such as CUDA stream, cublas handle, etc. from
|
|
* KernelContext. User should construct it before run the Operator.
|
|
*/
|
|
|
|
virtual void Compute(const KernelContext& context) const = 0;
|
|
|
|
virtual ~OpKernel() {}
|
|
};
|
|
|
|
template <typename T>
|
|
struct VarToTensor {};
|
|
|
|
template <>
|
|
struct VarToTensor<Tensor*> {
|
|
Tensor* operator()(Variable* var) { return var->GetMutable<Tensor>(); }
|
|
};
|
|
|
|
template <>
|
|
struct VarToTensor<const Tensor*> {
|
|
const Tensor* operator()(Variable* var) { return &var->Get<Tensor>(); }
|
|
};
|
|
|
|
class OperatorWithKernel : public OperatorBase {
|
|
public:
|
|
struct OpKernelKey {
|
|
platform::Place place_;
|
|
|
|
OpKernelKey() = default;
|
|
OpKernelKey(const platform::DeviceContext& dev_ctx) {
|
|
place_ = dev_ctx.GetPlace();
|
|
}
|
|
|
|
bool operator==(const OpKernelKey& o) const { return place_ == o.place_; }
|
|
};
|
|
|
|
struct OpKernelHash {
|
|
std::hash<bool> hash_;
|
|
size_t operator()(const OpKernelKey& key) const {
|
|
return hash_(platform::is_gpu_place(key.place_));
|
|
}
|
|
};
|
|
|
|
using OpKernelMap =
|
|
std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
|
|
|
|
void Run(const ScopePtr& scope,
|
|
const platform::DeviceContext& dev_ctx) const final {
|
|
auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
|
|
opKernel->Compute(KernelContext(this, scope, dev_ctx));
|
|
}
|
|
|
|
static std::unordered_map<std::string /* op_type */, OpKernelMap>&
|
|
AllOpKernels() {
|
|
static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
|
|
return g_all_op_kernels;
|
|
}
|
|
|
|
void InferShape(const std::shared_ptr<Scope>& scope) const final {
|
|
std::vector<const Tensor*> ins;
|
|
VarNamesToTensors(scope, inputs_, &ins);
|
|
std::vector<Tensor*> outs;
|
|
VarNamesToTensors(scope, outputs_, &outs);
|
|
InferShape(ins, outs);
|
|
};
|
|
|
|
private:
|
|
template <typename T>
|
|
void VarNamesToTensors(const std::shared_ptr<Scope>& scope,
|
|
const std::vector<std::string>& var_names,
|
|
std::vector<T>* container) const {
|
|
container->reserve(var_names.size());
|
|
VarToTensor<T> convert;
|
|
for (auto& name : var_names) {
|
|
auto var = scope->GetVariable(name);
|
|
if (var != nullptr) {
|
|
container->push_back(convert(var));
|
|
} else {
|
|
container->push_back(nullptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
protected:
|
|
virtual void InferShape(const std::vector<const Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) const = 0;
|
|
};
|
|
|
|
} // namespace framework
|
|
} // namespace paddle
|