You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
78 lines
2.0 KiB
78 lines
2.0 KiB
#!/usr/bin/env python
|
|
|
|
from paddle.trainer_config_helpers import *
|
|
|
|
height = 227
|
|
width = 227
|
|
num_class = 1000
|
|
batch_size = get_config_arg('batch_size', int, 128)
|
|
gp = get_config_arg('layer_num', int, 1)
|
|
is_infer = get_config_arg("is_infer", bool, False)
|
|
num_samples = get_config_arg('num_samples', int, 2560)
|
|
|
|
args = {
|
|
'height': height,
|
|
'width': width,
|
|
'color': True,
|
|
'num_class': num_class,
|
|
'is_infer': is_infer,
|
|
'num_samples': num_samples
|
|
}
|
|
define_py_data_sources2(
|
|
"train.list", None, module="provider", obj="process", args=args)
|
|
|
|
settings(
|
|
batch_size=batch_size,
|
|
learning_rate=0.01 / batch_size,
|
|
learning_method=MomentumOptimizer(0.9),
|
|
regularization=L2Regularization(0.0005 * batch_size))
|
|
|
|
# conv1
|
|
net = data_layer('data', size=height * width * 3)
|
|
net = img_conv_layer(
|
|
input=net,
|
|
filter_size=11,
|
|
num_channels=3,
|
|
num_filters=96,
|
|
stride=4,
|
|
padding=1)
|
|
net = img_cmrnorm_layer(input=net, size=5, scale=0.0001, power=0.75)
|
|
net = img_pool_layer(input=net, pool_size=3, stride=2)
|
|
|
|
# conv2
|
|
net = img_conv_layer(
|
|
input=net, filter_size=5, num_filters=256, stride=1, padding=2, groups=gp)
|
|
net = img_cmrnorm_layer(input=net, size=5, scale=0.0001, power=0.75)
|
|
net = img_pool_layer(input=net, pool_size=3, stride=2)
|
|
|
|
# conv3
|
|
net = img_conv_layer(
|
|
input=net, filter_size=3, num_filters=384, stride=1, padding=1)
|
|
# conv4
|
|
net = img_conv_layer(
|
|
input=net, filter_size=3, num_filters=384, stride=1, padding=1, groups=gp)
|
|
|
|
# conv5
|
|
net = img_conv_layer(
|
|
input=net, filter_size=3, num_filters=256, stride=1, padding=1, groups=gp)
|
|
net = img_pool_layer(input=net, pool_size=3, stride=2)
|
|
|
|
net = fc_layer(
|
|
input=net,
|
|
size=4096,
|
|
act=ReluActivation(),
|
|
layer_attr=ExtraAttr(drop_rate=0.5))
|
|
net = fc_layer(
|
|
input=net,
|
|
size=4096,
|
|
act=ReluActivation(),
|
|
layer_attr=ExtraAttr(drop_rate=0.5))
|
|
net = fc_layer(input=net, size=1000, act=SoftmaxActivation())
|
|
|
|
if is_infer:
|
|
outputs(net)
|
|
else:
|
|
lab = data_layer('label', num_class)
|
|
loss = cross_entropy(input=net, label=lab)
|
|
outputs(loss)
|