You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
151 lines
6.0 KiB
151 lines
6.0 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace tensorrt {
|
|
|
|
template <typename RegistFunc, typename SetDilationFunc>
|
|
void ConvertConv2d(TensorRTEngine* engine, const framework::proto::OpDesc& op,
|
|
const framework::Scope& scope, bool test_mode,
|
|
RegistFunc fadd_layer, SetDilationFunc fset_dilation,
|
|
const std::string& name) {
|
|
VLOG(3) << "convert a fluid " << name << " op to tensorrt layer without bias";
|
|
|
|
framework::OpDesc op_desc(op, nullptr);
|
|
PADDLE_ENFORCE_EQ(op_desc.Input("Input").size(), 1);
|
|
PADDLE_ENFORCE_EQ(op_desc.Input("Filter").size(), 1); // Y is a weight
|
|
PADDLE_ENFORCE_EQ(op_desc.Output("Output").size(), 1);
|
|
|
|
PADDLE_ENFORCE(engine != nullptr);
|
|
auto* X = engine->GetITensor(op_desc.Input("Input").front());
|
|
auto* Y_v = scope.FindVar(op_desc.Input("Filter").front());
|
|
PADDLE_ENFORCE_NOT_NULL(Y_v);
|
|
auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
|
|
float* weight_data = nullptr;
|
|
bool enable_int8 = boost::get<bool>(op_desc.HasAttr("enable_int8"));
|
|
|
|
if (enable_int8) {
|
|
#if IS_TRT_VERSION_GE(5000)
|
|
CHECK(op_desc.HasAttr("Input_scale"));
|
|
float in_scale = boost::get<float>(op_desc.GetAttr("Input_scale"));
|
|
auto weight_scale =
|
|
boost::get<std::vector<float>>(op_desc.GetAttr("weight_scale"));
|
|
weight_data = engine->GetWeightCPUData(op_desc.Input("Filter").front(), Y_t,
|
|
true, weight_scale);
|
|
engine->SetTensorDynamicRange(X, in_scale);
|
|
#endif
|
|
} else {
|
|
weight_data =
|
|
engine->GetWeightCPUData(op_desc.Input("Filter").front(), Y_t, false);
|
|
}
|
|
|
|
PADDLE_ENFORCE_EQ(Y_t->dims().size(), 4UL);
|
|
const int n_output = Y_t->dims()[0];
|
|
const int n_input = Y_t->dims()[1];
|
|
const int filter_h = Y_t->dims()[2];
|
|
const int filter_w = Y_t->dims()[3];
|
|
const int groups = boost::get<int>(op_desc.GetAttr("groups"));
|
|
const std::vector<int> dilations =
|
|
boost::get<std::vector<int>>(op_desc.GetAttr("dilations"));
|
|
const std::vector<int> strides =
|
|
boost::get<std::vector<int>>(op_desc.GetAttr("strides"));
|
|
const std::vector<int> paddings =
|
|
boost::get<std::vector<int>>(op_desc.GetAttr("paddings"));
|
|
|
|
nvinfer1::DimsHW nv_ksize(filter_h, filter_w);
|
|
nvinfer1::DimsHW nv_dilations(dilations[0], dilations[1]);
|
|
nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
|
|
nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);
|
|
|
|
TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
|
|
static_cast<void*>(weight_data),
|
|
static_cast<size_t>(Y_t->numel())};
|
|
|
|
TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT, nullptr, 0};
|
|
auto* layer = fadd_layer(const_cast<nvinfer1::ITensor*>(X), n_output, n_input,
|
|
nv_ksize, weight, bias);
|
|
PADDLE_ENFORCE(layer != nullptr);
|
|
layer->setStride(nv_strides);
|
|
layer->setPadding(nv_paddings);
|
|
layer->setNbGroups(groups);
|
|
// set dilations
|
|
fset_dilation(layer, nv_dilations);
|
|
|
|
auto output_name = op_desc.Output("Output").front();
|
|
layer->setName((name + " (Output: " + output_name + ")").c_str());
|
|
layer->getOutput(0)->setName(output_name.c_str());
|
|
engine->SetITensor(output_name, layer->getOutput(0));
|
|
|
|
if (test_mode) {
|
|
engine->DeclareOutput(output_name);
|
|
}
|
|
}
|
|
|
|
class Conv2dOpConverter : public OpConverter {
|
|
public:
|
|
void operator()(const framework::proto::OpDesc& op,
|
|
const framework::Scope& scope, bool test_mode) override {
|
|
ConvertConv2d(
|
|
engine_, op, scope, test_mode,
|
|
[&](nvinfer1::ITensor* inputs, int n_output, /* Conv output maps */
|
|
int n_input, /* Conv input maps */
|
|
nvinfer1::DimsHW& ksize, TensorRTEngine::Weight& weight,
|
|
TensorRTEngine::Weight& bias) -> nvinfer1::IConvolutionLayer* {
|
|
auto* layer =
|
|
TRT_ENGINE_ADD_LAYER(engine_, Convolution, *inputs, n_output,
|
|
ksize, weight.get(), bias.get());
|
|
return layer;
|
|
},
|
|
[](nvinfer1::IConvolutionLayer* layer, nvinfer1::DimsHW& dilations) {
|
|
layer->setDilation(dilations);
|
|
},
|
|
"conv2d");
|
|
}
|
|
};
|
|
|
|
class Deconv2dOpConverter : public OpConverter {
|
|
public:
|
|
void operator()(const framework::proto::OpDesc& op,
|
|
const framework::Scope& scope, bool test_mode) override {
|
|
ConvertConv2d(
|
|
engine_, op, scope, test_mode,
|
|
[&](nvinfer1::ITensor* inputs, int n_output, /* Deconv input maps */
|
|
int n_input, /* Deconv output maps */
|
|
nvinfer1::DimsHW& ksize, TensorRTEngine::Weight& weight,
|
|
TensorRTEngine::Weight& bias) -> nvinfer1::IDeconvolutionLayer* {
|
|
auto* layer =
|
|
TRT_ENGINE_ADD_LAYER(engine_, Deconvolution, *inputs, n_input,
|
|
ksize, weight.get(), bias.get());
|
|
return layer;
|
|
},
|
|
[](nvinfer1::IDeconvolutionLayer* layer, nvinfer1::DimsHW& dilations) {
|
|
PADDLE_ENFORCE(
|
|
dilations.d[0] == 1 && dilations.d[1] == 1,
|
|
"Dilations must be (1, 1) for tensorRT, but given (%d, %d)",
|
|
dilations.d[0], dilations.d[1]);
|
|
},
|
|
"conv2d_transpose");
|
|
}
|
|
};
|
|
|
|
} // namespace tensorrt
|
|
} // namespace inference
|
|
} // namespace paddle
|
|
|
|
REGISTER_TRT_OP_CONVERTER(conv2d, Conv2dOpConverter);
|
|
REGISTER_TRT_OP_CONVERTER(conv2d_transpose, Deconv2dOpConverter);
|