You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
83 lines
3.0 KiB
83 lines
3.0 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace tensorrt {
|
|
|
|
/*
|
|
* DropoutOp. This Layer doesn't has weights.
|
|
*/
|
|
class DropoutOpConverter : public OpConverter {
|
|
public:
|
|
void operator()(const framework::proto::OpDesc& op,
|
|
const framework::Scope& scope, bool test_mode) override {
|
|
VLOG(3) << "convert a fluid dropout op to tensorrt dropout layer";
|
|
framework::OpDesc op_desc(op, nullptr);
|
|
// Declare inputs
|
|
auto* input1 = engine_->GetITensor(op_desc.Input("X")[0]);
|
|
float dropout_prob = boost::get<float>(op_desc.GetAttr("dropout_prob"));
|
|
|
|
std::string downgrade_in_infer = "";
|
|
if (op_desc.HasAttr("dropout_implementation")) {
|
|
downgrade_in_infer =
|
|
boost::get<std::string>(op_desc.GetAttr("dropout_implementation"));
|
|
}
|
|
|
|
if (!downgrade_in_infer.empty() &&
|
|
downgrade_in_infer == "upscale_in_train") {
|
|
auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input1);
|
|
auto output_name = op_desc.Output("Out")[0];
|
|
RreplenishLayerAndOutput(layer, "dropout", {output_name}, test_mode);
|
|
return;
|
|
}
|
|
|
|
platform::CPUPlace cpu_place;
|
|
std::unique_ptr<framework::LoDTensor> weight_tensor(
|
|
new framework::LoDTensor());
|
|
weight_tensor->Resize(framework::make_ddim({1}));
|
|
auto* weight_data =
|
|
weight_tensor->mutable_data<float>(platform::CPUPlace());
|
|
weight_data[0] = 1 - dropout_prob;
|
|
|
|
TensorRTEngine::Weight scale_weights{
|
|
nvinfer1::DataType::kFLOAT, static_cast<void*>(weight_data),
|
|
weight_tensor->memory_size() / sizeof(float)};
|
|
TensorRTEngine::Weight shift_weights{nvinfer1::DataType::kFLOAT, nullptr,
|
|
0};
|
|
TensorRTEngine::Weight power_weights{nvinfer1::DataType::kFLOAT, nullptr,
|
|
0};
|
|
|
|
auto* layer = TRT_ENGINE_ADD_LAYER(
|
|
engine_, Scale, *const_cast<nvinfer1::ITensor*>(input1),
|
|
nvinfer1::ScaleMode::kUNIFORM, shift_weights.get(), scale_weights.get(),
|
|
power_weights.get());
|
|
|
|
engine_->SetWeights(op_desc.Output("Out").front() + "_dropout",
|
|
std::move(weight_tensor));
|
|
auto output_name = op_desc.Output("Out")[0];
|
|
|
|
RreplenishLayerAndOutput(layer, "dropout", {output_name}, test_mode);
|
|
}
|
|
};
|
|
|
|
} // namespace tensorrt
|
|
} // namespace inference
|
|
} // namespace paddle
|
|
|
|
USE_OP(dropout);
|
|
REGISTER_TRT_OP_CONVERTER(dropout, DropoutOpConverter);
|