You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/tensorrt/plugin/swish_op_plugin.cu

77 lines
2.6 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <cassert>
#include <vector>
#include "glog/logging.h"
#include "paddle/fluid/inference/tensorrt/plugin/swish_op_plugin.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
SwishPlugin *CreateSwishPluginDeserialize(const void *buffer, size_t length) {
return new SwishPlugin(buffer, length);
}
REGISTER_TRT_PLUGIN("swish_plugin", CreateSwishPluginDeserialize);
int SwishPlugin::initialize() { return 0; }
nvinfer1::Dims SwishPlugin::getOutputDimensions(int index,
const nvinfer1::Dims *inputDims,
int nbInputs) {
assert(nbInputs == 1);
assert(index < this->getNbOutputs());
nvinfer1::Dims const &input_dims = inputDims[0];
nvinfer1::Dims output_dims = input_dims;
return output_dims;
}
__global__ void swish_kernel(int num, const float *input, float *output,
float beta) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
if (index < num) {
#if __CUDA_ARCH__ >= 350
output[index] =
__ldg(input + index) / (1.0f + expf(-beta * __ldg(input + index)));
#else
output[index] = input[index] / (1.0f + expf(-beta * input[index]));
#endif
}
}
int SwishPlugin::enqueue(int batch_size, const void *const *inputs,
void **outputs, void *workspace, cudaStream_t stream) {
// input dims is CHW.
const auto &input_dims = this->getInputDims(0);
const float *input = reinterpret_cast<const float *>(inputs[0]);
float *output = reinterpret_cast<float **>(outputs)[0];
int num = batch_size;
for (int i = 0; i < input_dims.nbDims; i++) {
num *= input_dims.d[i];
}
int threads = 1024;
int blocks = (num + threads - 1) / threads;
swish_kernel<<<blocks, threads, 0, stream>>>(num, input, output, beta_);
return cudaGetLastError() != cudaSuccess;
}
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle