You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							70 lines
						
					
					
						
							2.3 KiB
						
					
					
				
			
		
		
	
	
							70 lines
						
					
					
						
							2.3 KiB
						
					
					
				#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
from __future__ import print_function
 | 
						|
import paddle
 | 
						|
import paddle.fluid as fluid
 | 
						|
import contextlib
 | 
						|
import unittest
 | 
						|
 | 
						|
 | 
						|
def train_simulator(test_batch_size=10):
 | 
						|
    if test_batch_size <= 0:
 | 
						|
        raise ValueError("batch_size should be a positive integeral value, "
 | 
						|
                         "but got batch_size={}".format(test_batch_size))
 | 
						|
 | 
						|
    x = fluid.layers.data(name='x', shape=[13], dtype='float32')
 | 
						|
    y_predict = fluid.layers.fc(input=x, size=1, act=None)
 | 
						|
    y = fluid.layers.data(name='y', shape=[1], dtype='float32')
 | 
						|
 | 
						|
    cost = fluid.layers.square_error_cost(input=y_predict, label=y)
 | 
						|
    avg_cost = fluid.layers.mean(cost)
 | 
						|
 | 
						|
    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
 | 
						|
    sgd_optimizer.minimize(avg_cost)
 | 
						|
 | 
						|
    # Calculate memory usage in current network config
 | 
						|
    lower_usage, upper_usage, unit = fluid.contrib.memory_usage(
 | 
						|
        fluid.default_main_program(), batch_size=test_batch_size)
 | 
						|
 | 
						|
    print("memory usage is about %.3f - %.3f %s" %
 | 
						|
          (lower_usage, upper_usage, unit))
 | 
						|
 | 
						|
 | 
						|
class TestMemoryUsage(unittest.TestCase):
 | 
						|
    def test_with_unit_B(self):
 | 
						|
        with self.program_scope_guard():
 | 
						|
            train_simulator()
 | 
						|
 | 
						|
    def test_with_unit_KB(self):
 | 
						|
        with self.program_scope_guard():
 | 
						|
            train_simulator(test_batch_size=1000)
 | 
						|
 | 
						|
    def test_with_unit_MB(self):
 | 
						|
        with self.program_scope_guard():
 | 
						|
            train_simulator(test_batch_size=100000)
 | 
						|
 | 
						|
    @contextlib.contextmanager
 | 
						|
    def program_scope_guard(self):
 | 
						|
        prog = fluid.Program()
 | 
						|
        startup_prog = fluid.Program()
 | 
						|
        scope = fluid.core.Scope()
 | 
						|
        with fluid.scope_guard(scope):
 | 
						|
            with fluid.program_guard(prog, startup_prog):
 | 
						|
                yield
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    unittest.main()
 |