You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							106 lines
						
					
					
						
							3.8 KiB
						
					
					
				
			
		
		
	
	
							106 lines
						
					
					
						
							3.8 KiB
						
					
					
				#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
from __future__ import print_function
 | 
						|
 | 
						|
import unittest
 | 
						|
import numpy as np
 | 
						|
from op_test import OpTest
 | 
						|
 | 
						|
 | 
						|
def sequence_enumerate(input_seq, in_lod, win_size, pad_value):
 | 
						|
    lod0 = [0]
 | 
						|
    for i in range(0, len(in_lod[0])):
 | 
						|
        lod0.append(lod0[i] + in_lod[0][i])
 | 
						|
    out_seq = []
 | 
						|
    for i in range(0, len(lod0) - 1):
 | 
						|
        for idx in range(lod0[i], lod0[i + 1]):
 | 
						|
            single_seq = []
 | 
						|
            for word_idx in range(win_size):
 | 
						|
                word_pos = idx + word_idx
 | 
						|
                dat = input_seq[word_pos] if word_pos < lod0[i+1] \
 | 
						|
                    else pad_value
 | 
						|
                single_seq.append(dat)
 | 
						|
            out_seq.append(single_seq)
 | 
						|
    return out_seq
 | 
						|
 | 
						|
 | 
						|
class TestSequenceEnumerateOp(OpTest):
 | 
						|
    def setUp(self):
 | 
						|
        self.op_type = "sequence_enumerate"
 | 
						|
        self.init_test_case()
 | 
						|
        self.inputs = {'X': (self.in_seq, self.lod)}
 | 
						|
        self.attrs = {'win_size': self.win_size, 'pad_value': self.pad_value}
 | 
						|
        self.outputs = {'Out': (self.out_seq, self.lod)}
 | 
						|
 | 
						|
    def test_check_output(self):
 | 
						|
        self.check_output()
 | 
						|
 | 
						|
    def init_test_case(self):
 | 
						|
        self.in_seq = np.random.randint(0, 10, (30, 1)).astype("int32")
 | 
						|
        self.lod = [[9, 4, 11, 6]]
 | 
						|
        self.win_size = 2
 | 
						|
        self.pad_value = 0
 | 
						|
        out_seq = sequence_enumerate(self.in_seq, self.lod, self.win_size,
 | 
						|
                                     self.pad_value)
 | 
						|
        self.out_seq = np.array(out_seq).astype("int32")
 | 
						|
 | 
						|
 | 
						|
class TesSequenceEnumerateOpInt64(TestSequenceEnumerateOp):
 | 
						|
    def init_test_case(self):
 | 
						|
        self.in_seq = np.random.randint(0, 10, (30, 1)).astype("int64")
 | 
						|
        self.lod = [[9, 4, 11, 6]]
 | 
						|
        self.win_size = 2
 | 
						|
        self.pad_value = 0
 | 
						|
        out_seq = sequence_enumerate(self.in_seq, self.lod, self.win_size,
 | 
						|
                                     self.pad_value)
 | 
						|
        self.out_seq = np.array(out_seq).astype("int64")
 | 
						|
 | 
						|
 | 
						|
class TestSequenceEnumerateOpLargeWinSize(TestSequenceEnumerateOp):
 | 
						|
    def init_test_case(self):
 | 
						|
        self.in_seq = np.random.randint(0, 10, (30, 1)).astype("int32")
 | 
						|
        self.lod = [[9, 4, 11, 6]]
 | 
						|
        self.win_size = 5
 | 
						|
        self.pad_value = 0
 | 
						|
        out_seq = sequence_enumerate(self.in_seq, self.lod, self.win_size,
 | 
						|
                                     self.pad_value)
 | 
						|
        self.out_seq = np.array(out_seq).astype("int32")
 | 
						|
 | 
						|
 | 
						|
class TestSequenceEnumerateOpMaxWinSize(TestSequenceEnumerateOp):
 | 
						|
    def init_test_case(self):
 | 
						|
        self.in_seq = np.random.randint(0, 10, (30, 1)).astype("int32")
 | 
						|
        self.lod = [[9, 4, 11, 6]]
 | 
						|
        self.win_size = 30
 | 
						|
        self.pad_value = 0
 | 
						|
        out_seq = sequence_enumerate(self.in_seq, self.lod, self.win_size,
 | 
						|
                                     self.pad_value)
 | 
						|
        self.out_seq = np.array(out_seq).astype("int32")
 | 
						|
 | 
						|
 | 
						|
class TestSequenceEnumerateOpLargePadValue(TestSequenceEnumerateOp):
 | 
						|
    def init_test_case(self):
 | 
						|
        self.in_seq = np.random.randint(0, 10, (30, 1)).astype("int32")
 | 
						|
        self.lod = [[9, 4, 11, 6]]
 | 
						|
        self.win_size = 5
 | 
						|
        self.pad_value = 5
 | 
						|
        out_seq = sequence_enumerate(self.in_seq, self.lod, self.win_size,
 | 
						|
                                     self.pad_value)
 | 
						|
        self.out_seq = np.array(out_seq).astype("int32")
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    unittest.main()
 |