You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
181 lines
5.7 KiB
181 lines
5.7 KiB
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
|
|
|
|
class TestAdamOp1(OpTest):
|
|
def setUp(self):
|
|
'''Test Adam Op with supplied attributes
|
|
'''
|
|
self.op_type = "adam"
|
|
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
|
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
|
moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
|
# The second moment is positive
|
|
moment2 = np.random.random((102, 105)).astype("float32")
|
|
|
|
learning_rate = 0.004
|
|
beta1 = 0.78
|
|
beta2 = 0.836
|
|
epsilon = 1e-4
|
|
beta1_pow = beta1**10
|
|
beta2_pow = beta2**10
|
|
|
|
self.inputs = {
|
|
'Param': param,
|
|
'Grad': grad,
|
|
'Moment1': moment1,
|
|
'Moment2': moment2,
|
|
'LearningRate': np.array([learning_rate]).astype("float32"),
|
|
'Beta1Pow': np.array([beta1_pow]).astype("float32"),
|
|
'Beta2Pow': np.array([beta2_pow]).astype("float32")
|
|
}
|
|
|
|
self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}
|
|
|
|
param_out, moment1_out, \
|
|
moment2_out = adam_step(self.inputs, self.attrs)
|
|
|
|
self.outputs = {
|
|
'Moment1Out': moment1_out,
|
|
'Moment2Out': moment2_out,
|
|
'ParamOut': param_out
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestAdamOp2(OpTest):
|
|
def setUp(self):
|
|
'''Test Adam Op with supplied attributes
|
|
'''
|
|
self.op_type = "adam"
|
|
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
|
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
|
moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
|
# The second moment is positive
|
|
moment2 = np.random.random((102, 105)).astype("float32")
|
|
|
|
learning_rate = 0.001
|
|
beta1 = 0.9
|
|
beta2 = 0.999
|
|
epsilon = 1e-8
|
|
beta1_pow = beta1**10
|
|
beta2_pow = beta2**10
|
|
|
|
self.inputs = {
|
|
'Param': param,
|
|
'Grad': grad,
|
|
'Moment1': moment1,
|
|
'Moment2': moment2,
|
|
'LearningRate': np.array([learning_rate]).astype("float32"),
|
|
'Beta1Pow': np.array([beta1_pow]).astype("float32"),
|
|
'Beta2Pow': np.array([beta2_pow]).astype("float32")
|
|
}
|
|
|
|
attributes = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}
|
|
|
|
param_out, moment1_out, \
|
|
moment2_out = adam_step(self.inputs, attributes)
|
|
|
|
self.outputs = {
|
|
'Moment1Out': moment1_out,
|
|
'Moment2Out': moment2_out,
|
|
'ParamOut': param_out
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestAdamOpMultipleSteps(OpTest):
|
|
def setUp(self):
|
|
'''Test Adam Operator with supplied attributes
|
|
'''
|
|
self.op_type = "adam"
|
|
self.num_steps = 10
|
|
|
|
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
|
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
|
moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
|
# The second moment is positive
|
|
moment2 = np.random.random((102, 105)).astype("float32")
|
|
|
|
learning_rate = 0.001
|
|
beta1 = 0.9
|
|
beta2 = 0.999
|
|
epsilon = 1e-8
|
|
beta1_pow = beta1**10
|
|
beta2_pow = beta2**10
|
|
|
|
self.inputs = {
|
|
'Param': param,
|
|
'Grad': grad,
|
|
'Moment1': moment1,
|
|
'Moment2': moment2,
|
|
'LearningRate': np.array([learning_rate]).astype("float32"),
|
|
'Beta1Pow': np.array([beta1_pow]).astype("float32"),
|
|
'Beta2Pow': np.array([beta2_pow]).astype("float32")
|
|
}
|
|
|
|
self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}
|
|
|
|
def test_check_output(self):
|
|
for _ in range(self.num_steps):
|
|
param_out, moment1_out, \
|
|
moment2_out = adam_step(self.inputs, self.attrs)
|
|
|
|
self.outputs = {
|
|
'Moment1Out': moment1_out,
|
|
'Moment2Out': moment2_out,
|
|
'ParamOut': param_out
|
|
}
|
|
|
|
# Verify output for this step
|
|
self.check_output()
|
|
|
|
# Output of this step becomes input for next step
|
|
self.inputs['Param'] = param_out
|
|
self.inputs['Moment1'] = moment1_out
|
|
self.inputs['Moment2'] = moment2_out
|
|
|
|
# Update powers of Beta1 and Beta2 for next time step
|
|
self.inputs['Beta1Pow'] *= self.attrs['beta1']
|
|
self.inputs['Beta2Pow'] *= self.attrs['beta1']
|
|
|
|
# Randomize gradient for next step
|
|
self.inputs['Grad'] = np.random.uniform(
|
|
-1, 1, (102, 105)).astype("float32")
|
|
|
|
|
|
def adam_step(inputs, attributes):
|
|
'''
|
|
Simulate one step of the adam optimizer
|
|
:param inputs: dict of inputs
|
|
:param attributes: dict of attributes
|
|
:return tuple: tuple of output param, moment1, moment2,
|
|
beta1 power accumulator and beta2 power accumulator
|
|
'''
|
|
param = inputs['Param']
|
|
grad = inputs['Grad']
|
|
moment1 = inputs['Moment1']
|
|
moment2 = inputs['Moment2']
|
|
lr = inputs['LearningRate']
|
|
beta1_pow = inputs['Beta1Pow']
|
|
beta2_pow = inputs['Beta2Pow']
|
|
|
|
beta1 = attributes['beta1']
|
|
beta2 = attributes['beta2']
|
|
epsilon = attributes['epsilon']
|
|
|
|
moment1_out = beta1 * moment1 + (1 - beta1) * grad
|
|
moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad)
|
|
lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow)
|
|
param_out = param - lr_t * (moment1_out / (np.sqrt(moment2_out) + epsilon))
|
|
return param_out, moment1_out, moment2_out
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|