You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/v1_api_demo/quick_start/api_train.py

123 lines
4.4 KiB

# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import itertools
import random
from paddle.trainer.config_parser import parse_config
from py_paddle import swig_paddle as api
from py_paddle import DataProviderConverter
from paddle.trainer.PyDataProvider2 \
import integer_value, integer_value_sequence, sparse_binary_vector
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument(
"--train_data", type=str, required=False, help="train data file")
parser.add_argument("--test_data", type=str, help="test data file")
parser.add_argument(
"--config", type=str, required=True, help="config file name")
parser.add_argument("--dict_file", required=True, help="dictionary file")
parser.add_argument(
"--seq", default=1, type=int, help="whether use sequence training")
parser.add_argument(
"--use_gpu", default=0, type=int, help="whether use GPU for training")
parser.add_argument(
"--trainer_count",
default=1,
type=int,
help="Number of threads for training")
parser.add_argument(
"--num_passes", default=5, type=int, help="Number of training passes")
return parser.parse_args()
UNK_IDX = 0
def load_data(file_name, word_dict):
with open(file_name, 'r') as f:
for line in f:
label, comment = line.strip().split('\t')
words = comment.split()
word_slot = [word_dict.get(w, UNK_IDX) for w in words]
yield word_slot, int(label)
def load_dict(dict_file):
word_dict = dict()
with open(dict_file, 'r') as f:
for i, line in enumerate(f):
w = line.strip().split()[0]
word_dict[w] = i
return word_dict
def main():
options = parse_arguments()
api.initPaddle("--use_gpu=%s" % options.use_gpu,
"--trainer_count=%s" % options.trainer_count)
word_dict = load_dict(options.dict_file)
train_dataset = list(load_data(options.train_data, word_dict))
if options.test_data:
test_dataset = list(load_data(options.test_data, word_dict))
else:
test_dataset = None
trainer_config = parse_config(options.config,
"dict_file=%s" % options.dict_file)
# No need to have data provider for trainer
trainer_config.ClearField('data_config')
trainer_config.ClearField('test_data_config')
# create a GradientMachine from the model configuratin
model = api.GradientMachine.createFromConfigProto(
trainer_config.model_config)
# create a trainer for the gradient machine
trainer = api.Trainer.create(trainer_config, model)
# create a data converter which converts data to PaddlePaddle
# internal format
input_types = [
integer_value_sequence(len(word_dict)) if options.seq else
sparse_binary_vector(len(word_dict)), integer_value(2)
]
converter = DataProviderConverter(input_types)
batch_size = trainer_config.opt_config.batch_size
trainer.startTrain()
for train_pass in xrange(options.num_passes):
trainer.startTrainPass()
random.shuffle(train_dataset)
for pos in xrange(0, len(train_dataset), batch_size):
batch = itertools.islice(train_dataset, pos, pos + batch_size)
size = min(batch_size, len(train_dataset) - pos)
trainer.trainOneDataBatch(size, converter(batch))
trainer.finishTrainPass()
if test_dataset:
trainer.startTestPeriod()
for pos in xrange(0, len(test_dataset), batch_size):
batch = itertools.islice(test_dataset, pos, pos + batch_size)
size = min(batch_size, len(test_dataset) - pos)
trainer.testOneDataBatch(size, converter(batch))
trainer.finishTestPeriod()
trainer.finishTrain()
if __name__ == '__main__':
main()