You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/incubate/hapi/datasets/flowers.py

131 lines
4.6 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import io
import tarfile
import numpy as np
import scipy.io as scio
from PIL import Image
from paddle.io import Dataset
from .utils import _check_exists_and_download
__all__ = ["Flowers"]
DATA_URL = 'http://paddlemodels.bj.bcebos.com/flowers/102flowers.tgz'
LABEL_URL = 'http://paddlemodels.bj.bcebos.com/flowers/imagelabels.mat'
SETID_URL = 'http://paddlemodels.bj.bcebos.com/flowers/setid.mat'
DATA_MD5 = '52808999861908f626f3c1f4e79d11fa'
LABEL_MD5 = 'e0620be6f572b9609742df49c70aed4d'
SETID_MD5 = 'a5357ecc9cb78c4bef273ce3793fc85c'
# In official 'readme', tstid is the flag of test data
# and trnid is the flag of train data. But test data is more than train data.
# So we exchange the train data and test data.
MODE_FLAG_MAP = {'train': 'tstid', 'test': 'trnid', 'valid': 'valid'}
class Flowers(Dataset):
"""
Implementation of `Flowers <https://www.robots.ox.ac.uk/~vgg/data/flowers/>`_
dataset
Args:
data_file(str): path to data file, can be set None if
:attr:`download` is True. Default None
label_file(str): path to label file, can be set None if
:attr:`download` is True. Default None
setid_file(str): path to subset index file, can be set
None if :attr:`download` is True. Default None
mode(str): 'train', 'valid' or 'test' mode. Default 'train'.
transform(callable): transform to perform on image, None for on transform.
download(bool): whether to download dataset automatically if
:attr:`data_file` is not set. Default True
Examples:
.. code-block:: python
from paddle.incubate.hapi.datasets import Flowers
flowers = Flowers(mode='test')
for i in range(len(flowers)):
sample = flowers[i]
print(sample[0].shape, sample[1])
"""
def __init__(self,
data_file=None,
label_file=None,
setid_file=None,
mode='train',
transform=None,
download=True):
assert mode.lower() in ['train', 'valid', 'test'], \
"mode should be 'train', 'valid' or 'test', but got {}".format(mode)
self.flag = MODE_FLAG_MAP[mode.lower()]
self.data_file = data_file
if self.data_file is None:
assert download, "data_file is not set and downloading automatically is disabled"
self.data_file = _check_exists_and_download(
data_file, DATA_URL, DATA_MD5, 'flowers', download)
self.label_file = label_file
if self.label_file is None:
assert download, "label_file is not set and downloading automatically is disabled"
self.label_file = _check_exists_and_download(
label_file, LABEL_URL, LABEL_MD5, 'flowers', download)
self.setid_file = setid_file
if self.setid_file is None:
assert download, "setid_file is not set and downloading automatically is disabled"
self.setid_file = _check_exists_and_download(
setid_file, SETID_URL, SETID_MD5, 'flowers', download)
self.transform = transform
# read dataset into memory
self._load_anno()
def _load_anno(self):
self.name2mem = {}
self.data_tar = tarfile.open(self.data_file)
for ele in self.data_tar.getmembers():
self.name2mem[ele.name] = ele
self.labels = scio.loadmat(self.label_file)['labels'][0]
self.indexes = scio.loadmat(self.setid_file)[self.flag][0]
def __getitem__(self, idx):
index = self.indexes[idx]
label = np.array([self.labels[index - 1]])
img_name = "jpg/image_%05d.jpg" % index
img_ele = self.name2mem[img_name]
image = self.data_tar.extractfile(img_ele).read()
image = np.array(Image.open(io.BytesIO(image)))
if self.transform is not None:
image = self.transform(image)
return image, label.astype('int64')
def __len__(self):
return len(self.indexes)