You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/incubate/hapi/datasets/movie_reviews.py

174 lines
5.5 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import six
import numpy as np
import collections
import nltk
from nltk.corpus import movie_reviews
import zipfile
from functools import cmp_to_key
from itertools import chain
import paddle
from paddle.io import Dataset
__all__ = ['MovieReviews']
URL = "https://corpora.bj.bcebos.com/movie_reviews%2Fmovie_reviews.zip"
MD5 = '155de2b77c6834dd8eea7cbe88e93acb'
NUM_TRAINING_INSTANCES = 1600
NUM_TOTAL_INSTANCES = 2000
class MovieReviews(Dataset):
"""
Implementation of `NLTK movie reviews <http://www.nltk.org/nltk_data/>`_ dataset.
Args:
data_file(str): path to data tar file, can be set None if
:attr:`download` is True. Default None
mode(str): 'train' 'test' mode. Default 'train'.
download(bool): whether auto download cifar dataset if
:attr:`data_file` unset. Default True.
Returns:
Dataset: instance of movie reviews dataset
Examples:
.. code-block:: python
import paddle
from paddle.incubate.hapi.datasets import MovieReviews
class SimpleNet(paddle.nn.Layer):
def __init__(self):
super(SimpleNet, self).__init__()
def forward(self, word, category):
return paddle.sum(word), category
paddle.disable_static()
movie_reviews = MovieReviews(mode='train')
for i in range(10):
word_list, category = movie_reviews[i]
word_list = paddle.to_tensor(word_list)
category = paddle.to_tensor(category)
model = SimpleNet()
word_list, category = model(word_list, category)
print(word_list.numpy().shape, category.numpy())
"""
def __init__(self, mode='train'):
assert mode.lower() in ['train', 'test'], \
"mode should be 'train', 'test', but got {}".format(mode)
self.mode = mode.lower()
self._download_data_if_not_yet()
# read dataset into memory
self._load_sentiment_data()
def _get_word_dict(self):
"""
Sorted the words by the frequency of words which occur in sample
:return:
words_freq_sorted
"""
words_freq_sorted = list()
word_freq_dict = collections.defaultdict(int)
for category in movie_reviews.categories():
for field in movie_reviews.fileids(category):
for words in movie_reviews.words(field):
word_freq_dict[words] += 1
words_sort_list = list(six.iteritems(word_freq_dict))
words_sort_list.sort(key=cmp_to_key(lambda a, b: b[1] - a[1]))
for index, word in enumerate(words_sort_list):
words_freq_sorted.append((word[0], index))
return words_freq_sorted
def _sort_files(self):
"""
Sorted the sample for cross reading the sample
:return:
files_list
"""
files_list = list()
neg_file_list = movie_reviews.fileids('neg')
pos_file_list = movie_reviews.fileids('pos')
files_list = list(
chain.from_iterable(list(zip(neg_file_list, pos_file_list))))
return files_list
def _load_sentiment_data(self):
"""
Load the data set
:return:
data_set
"""
self.data = []
words_ids = dict(self._get_word_dict())
for sample_file in self._sort_files():
words_list = list()
category = 0 if 'neg' in sample_file else 1
for word in movie_reviews.words(sample_file):
words_list.append(words_ids[word.lower()])
self.data.append((words_list, category))
def _download_data_if_not_yet(self):
"""
Download the data set, if the data set is not download.
"""
try:
# download and extract movie_reviews.zip
paddle.dataset.common.download(
URL, 'corpora', md5sum=MD5, save_name='movie_reviews.zip')
path = os.path.join(paddle.dataset.common.DATA_HOME, 'corpora')
filename = os.path.join(path, 'movie_reviews.zip')
zip_file = zipfile.ZipFile(filename)
zip_file.extractall(path)
zip_file.close()
# make sure that nltk can find the data
if paddle.dataset.common.DATA_HOME not in nltk.data.path:
nltk.data.path.append(paddle.dataset.common.DATA_HOME)
movie_reviews.categories()
except LookupError:
print("Downloading movie_reviews data set, please wait.....")
nltk.download(
'movie_reviews', download_dir=paddle.dataset.common.DATA_HOME)
print("Download data set success.....")
print("Path is " + nltk.data.find('corpora/movie_reviews').path)
def __getitem__(self, idx):
if self.mode == 'test':
idx += NUM_TRAINING_INSTANCES
data = self.data[idx]
return np.array(data[0]), np.array(data[1])
def __len__(self):
if self.mode == 'train':
return NUM_TRAINING_INSTANCES
else:
return NUM_TOTAL_INSTANCES - NUM_TRAINING_INSTANCES