You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
5.5 KiB
174 lines
5.5 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import six
|
|
import numpy as np
|
|
import collections
|
|
import nltk
|
|
from nltk.corpus import movie_reviews
|
|
import zipfile
|
|
from functools import cmp_to_key
|
|
from itertools import chain
|
|
|
|
import paddle
|
|
from paddle.io import Dataset
|
|
|
|
__all__ = ['MovieReviews']
|
|
|
|
URL = "https://corpora.bj.bcebos.com/movie_reviews%2Fmovie_reviews.zip"
|
|
MD5 = '155de2b77c6834dd8eea7cbe88e93acb'
|
|
|
|
NUM_TRAINING_INSTANCES = 1600
|
|
NUM_TOTAL_INSTANCES = 2000
|
|
|
|
|
|
class MovieReviews(Dataset):
|
|
"""
|
|
Implementation of `NLTK movie reviews <http://www.nltk.org/nltk_data/>`_ dataset.
|
|
|
|
Args:
|
|
data_file(str): path to data tar file, can be set None if
|
|
:attr:`download` is True. Default None
|
|
mode(str): 'train' 'test' mode. Default 'train'.
|
|
download(bool): whether auto download cifar dataset if
|
|
:attr:`data_file` unset. Default True.
|
|
|
|
Returns:
|
|
Dataset: instance of movie reviews dataset
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
import paddle
|
|
from paddle.incubate.hapi.datasets import MovieReviews
|
|
|
|
class SimpleNet(paddle.nn.Layer):
|
|
def __init__(self):
|
|
super(SimpleNet, self).__init__()
|
|
|
|
def forward(self, word, category):
|
|
return paddle.sum(word), category
|
|
|
|
paddle.disable_static()
|
|
|
|
movie_reviews = MovieReviews(mode='train')
|
|
|
|
for i in range(10):
|
|
word_list, category = movie_reviews[i]
|
|
word_list = paddle.to_tensor(word_list)
|
|
category = paddle.to_tensor(category)
|
|
|
|
model = SimpleNet()
|
|
word_list, category = model(word_list, category)
|
|
print(word_list.numpy().shape, category.numpy())
|
|
|
|
"""
|
|
|
|
def __init__(self, mode='train'):
|
|
assert mode.lower() in ['train', 'test'], \
|
|
"mode should be 'train', 'test', but got {}".format(mode)
|
|
self.mode = mode.lower()
|
|
|
|
self._download_data_if_not_yet()
|
|
|
|
# read dataset into memory
|
|
self._load_sentiment_data()
|
|
|
|
def _get_word_dict(self):
|
|
"""
|
|
Sorted the words by the frequency of words which occur in sample
|
|
:return:
|
|
words_freq_sorted
|
|
"""
|
|
words_freq_sorted = list()
|
|
word_freq_dict = collections.defaultdict(int)
|
|
|
|
for category in movie_reviews.categories():
|
|
for field in movie_reviews.fileids(category):
|
|
for words in movie_reviews.words(field):
|
|
word_freq_dict[words] += 1
|
|
words_sort_list = list(six.iteritems(word_freq_dict))
|
|
words_sort_list.sort(key=cmp_to_key(lambda a, b: b[1] - a[1]))
|
|
for index, word in enumerate(words_sort_list):
|
|
words_freq_sorted.append((word[0], index))
|
|
return words_freq_sorted
|
|
|
|
def _sort_files(self):
|
|
"""
|
|
Sorted the sample for cross reading the sample
|
|
:return:
|
|
files_list
|
|
"""
|
|
files_list = list()
|
|
neg_file_list = movie_reviews.fileids('neg')
|
|
pos_file_list = movie_reviews.fileids('pos')
|
|
files_list = list(
|
|
chain.from_iterable(list(zip(neg_file_list, pos_file_list))))
|
|
return files_list
|
|
|
|
def _load_sentiment_data(self):
|
|
"""
|
|
Load the data set
|
|
:return:
|
|
data_set
|
|
"""
|
|
self.data = []
|
|
words_ids = dict(self._get_word_dict())
|
|
for sample_file in self._sort_files():
|
|
words_list = list()
|
|
category = 0 if 'neg' in sample_file else 1
|
|
for word in movie_reviews.words(sample_file):
|
|
words_list.append(words_ids[word.lower()])
|
|
self.data.append((words_list, category))
|
|
|
|
def _download_data_if_not_yet(self):
|
|
"""
|
|
Download the data set, if the data set is not download.
|
|
"""
|
|
try:
|
|
# download and extract movie_reviews.zip
|
|
paddle.dataset.common.download(
|
|
URL, 'corpora', md5sum=MD5, save_name='movie_reviews.zip')
|
|
path = os.path.join(paddle.dataset.common.DATA_HOME, 'corpora')
|
|
filename = os.path.join(path, 'movie_reviews.zip')
|
|
zip_file = zipfile.ZipFile(filename)
|
|
zip_file.extractall(path)
|
|
zip_file.close()
|
|
# make sure that nltk can find the data
|
|
if paddle.dataset.common.DATA_HOME not in nltk.data.path:
|
|
nltk.data.path.append(paddle.dataset.common.DATA_HOME)
|
|
movie_reviews.categories()
|
|
except LookupError:
|
|
print("Downloading movie_reviews data set, please wait.....")
|
|
nltk.download(
|
|
'movie_reviews', download_dir=paddle.dataset.common.DATA_HOME)
|
|
print("Download data set success.....")
|
|
print("Path is " + nltk.data.find('corpora/movie_reviews').path)
|
|
|
|
def __getitem__(self, idx):
|
|
if self.mode == 'test':
|
|
idx += NUM_TRAINING_INSTANCES
|
|
data = self.data[idx]
|
|
return np.array(data[0]), np.array(data[1])
|
|
|
|
def __len__(self):
|
|
if self.mode == 'train':
|
|
return NUM_TRAINING_INSTANCES
|
|
else:
|
|
return NUM_TOTAL_INSTANCES - NUM_TRAINING_INSTANCES
|