You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
222 lines
6.8 KiB
222 lines
6.8 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import inspect
|
|
import numpy as np
|
|
|
|
from collections import OrderedDict
|
|
from paddle import fluid
|
|
from paddle.fluid.framework import Variable
|
|
from paddle.fluid.executor import global_scope
|
|
|
|
__all__ = ['uncombined_weight_to_state_dict']
|
|
|
|
|
|
def uncombined_weight_to_state_dict(weight_dir):
|
|
"""
|
|
Convert uncombined weight which getted by using `fluid.io.save_params` or `fluid.io.save_persistables` to state_dict
|
|
|
|
Args:
|
|
weight_dir (str): weight direcotory path.
|
|
|
|
Returns:
|
|
OrderDict: weight dict.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import os
|
|
|
|
from paddle import fluid
|
|
from paddle.nn import Conv2D, Pool2D, Linear, ReLU, Sequential
|
|
from paddle.incubate.hapi.utils import uncombined_weight_to_state_dict
|
|
|
|
|
|
class LeNetDygraph(fluid.dygraph.Layer):
|
|
def __init__(self, num_classes=10, classifier_activation='softmax'):
|
|
super(LeNetDygraph, self).__init__()
|
|
self.num_classes = num_classes
|
|
self.features = Sequential(
|
|
Conv2D(
|
|
1, 6, 3, stride=1, padding=1),
|
|
ReLU(),
|
|
Pool2D(2, 'max', 2),
|
|
Conv2D(
|
|
6, 16, 5, stride=1, padding=0),
|
|
ReLU(),
|
|
Pool2D(2, 'max', 2))
|
|
|
|
if num_classes > 0:
|
|
self.fc = Sequential(
|
|
Linear(400, 120),
|
|
Linear(120, 84),
|
|
Linear(
|
|
84, 10, act=classifier_activation))
|
|
|
|
def forward(self, inputs):
|
|
x = self.features(inputs)
|
|
|
|
if self.num_classes > 0:
|
|
x = fluid.layers.flatten(x, 1)
|
|
x = self.fc(x)
|
|
return x
|
|
|
|
# save weight use fluid.io.save_params
|
|
save_dir = 'temp'
|
|
if not os.path.exists(save_dir):
|
|
os.makedirs(save_dir)
|
|
|
|
start_prog = fluid.Program()
|
|
train_prog = fluid.Program()
|
|
|
|
x = fluid.data(name='x', shape=[None, 1, 28, 28], dtype='float32')
|
|
|
|
with fluid.program_guard(train_prog, start_prog):
|
|
with fluid.unique_name.guard():
|
|
x = fluid.data(
|
|
name='x', shape=[None, 1, 28, 28], dtype='float32')
|
|
model = LeNetDygraph()
|
|
output = model.forward(x)
|
|
|
|
excutor = fluid.Executor()
|
|
excutor.run(start_prog)
|
|
|
|
test_prog = train_prog.clone(for_test=True)
|
|
|
|
fluid.io.save_params(excutor, save_dir, test_prog)
|
|
|
|
# convert uncombined weight to state dict
|
|
state_dict = uncombined_weight_to_state_dict(save_dir)
|
|
|
|
key2key_dict = {
|
|
'features.0.weight': 'conv2d_0.w_0',
|
|
'features.0.bias': 'conv2d_0.b_0',
|
|
'features.3.weight': 'conv2d_1.w_0',
|
|
'features.3.bias': 'conv2d_1.b_0',
|
|
'fc.0.weight': 'linear_0.w_0',
|
|
'fc.0.bias': 'linear_0.b_0',
|
|
'fc.1.weight': 'linear_1.w_0',
|
|
'fc.1.bias': 'linear_1.b_0',
|
|
'fc.2.weight': 'linear_2.w_0',
|
|
'fc.2.bias': 'linear_2.b_0'
|
|
}
|
|
|
|
fluid.enable_imperative()
|
|
dygraph_model = LeNetDygraph()
|
|
|
|
converted_state_dict = dygraph_model.state_dict()
|
|
for k1, k2 in key2key_dict.items():
|
|
converted_state_dict[k1] = state_dict[k2]
|
|
|
|
# dygraph model load state dict which converted from uncombined weight
|
|
dygraph_model.set_dict(converted_state_dict)
|
|
"""
|
|
|
|
def _get_all_params_name(dir):
|
|
params_name = []
|
|
dir = os.path.expanduser(dir)
|
|
|
|
dir_len = len(dir)
|
|
for root, _, fnames in sorted(os.walk(dir, followlinks=True)):
|
|
for fname in sorted(fnames):
|
|
path = os.path.join(root[dir_len:], fname)
|
|
params_name.append(path)
|
|
|
|
return params_name
|
|
|
|
class Load(fluid.dygraph.Layer):
|
|
def __init__(self):
|
|
super(Load, self).__init__()
|
|
|
|
def forward(self, filename):
|
|
weight = self.create_parameter(
|
|
shape=[1],
|
|
dtype='float32',
|
|
default_initializer=fluid.initializer.ConstantInitializer(0.0))
|
|
self._helper.append_op(
|
|
type='load',
|
|
inputs={},
|
|
outputs={'Out': [weight]},
|
|
attrs={'file_path': filename})
|
|
return weight
|
|
|
|
params_name_list = _get_all_params_name(weight_dir)
|
|
if not fluid.in_dygraph_mode():
|
|
dygraph_enabled = False
|
|
fluid.enable_imperative()
|
|
else:
|
|
dygraph_enabled = True
|
|
|
|
load = Load()
|
|
state_dict = OrderedDict()
|
|
|
|
for param_name in params_name_list:
|
|
param_path = os.path.join(weight_dir, param_name)
|
|
weight = load(param_path)
|
|
try:
|
|
weight = weight.numpy()
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
state_dict[param_name] = weight
|
|
|
|
if not dygraph_enabled:
|
|
fluid.disable_imperative()
|
|
|
|
return state_dict
|
|
|
|
|
|
def to_list(value):
|
|
if value is None:
|
|
return value
|
|
if isinstance(value, (list, tuple)):
|
|
return list(value)
|
|
return [value]
|
|
|
|
|
|
def to_numpy(var):
|
|
assert isinstance(var, (Variable, fluid.core.VarBase)), "not a variable"
|
|
if isinstance(var, fluid.core.VarBase):
|
|
return var.numpy()
|
|
t = global_scope().find_var(var.name).get_tensor()
|
|
return np.array(t)
|
|
|
|
|
|
def flatten_list(l):
|
|
assert isinstance(l, list), "not a list"
|
|
outl = []
|
|
splits = []
|
|
for sl in l:
|
|
assert isinstance(sl, list), "sub content not a list"
|
|
splits.append(len(sl))
|
|
outl += sl
|
|
return outl, splits
|
|
|
|
|
|
def restore_flatten_list(l, splits):
|
|
outl = []
|
|
for split in splits:
|
|
assert len(l) >= split, "list length invalid"
|
|
sl, l = l[:split], l[split:]
|
|
outl.append(sl)
|
|
return outl
|
|
|
|
|
|
def extract_args(func):
|
|
if hasattr(inspect, 'getfullargspec'):
|
|
return inspect.getfullargspec(func)[0]
|
|
else:
|
|
return inspect.getargspec(func)[0]
|