You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/custom_op/test_custom_op.py

113 lines
3.6 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import numpy as np
import unittest
import contextlib
import paddle
import paddle.fluid as fluid
file_dir = os.path.dirname(os.path.abspath(__file__))
fluid.load_op_library(os.path.join(file_dir, 'librelu2_op.so'))
from paddle.fluid.layer_helper import LayerHelper
def relu2(x, name=None):
helper = LayerHelper("relu2", **locals())
out = helper.create_variable(
type=x.type, name=name, dtype=x.dtype, persistable=False)
helper.append_op(type="relu2", inputs={"X": x}, outputs={"Y": out})
return out
@contextlib.contextmanager
def scope_prog_guard():
prog = fluid.Program()
startup_prog = fluid.Program()
scope = fluid.core.Scope()
with fluid.scope_guard(scope):
with fluid.program_guard(prog, startup_prog):
yield
def linear_fc(data, label, use_custom_relu):
hidden = fluid.layers.fc(data, size=128)
hidden = relu2(hidden) if use_custom_relu else fluid.layers.relu(hidden)
hidden = fluid.layers.fc(hidden, size=128)
hidden = fluid.layers.fc(hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=hidden, label=label)
loss = fluid.layers.mean(loss)
return loss
def custom_op_test(use_gpu=True, use_custom_relu=True):
with scope_prog_guard():
np.random.seed(0)
fluid.default_startup_program().random_seed = 10
fluid.default_main_program().random_seed = 10
data = fluid.layers.data(
name='data', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
loss = linear_fc(data, label, use_custom_relu)
optimizer = fluid.optimizer.Momentum(learning_rate=0.1, momentum=0.9)
optimizer.minimize(loss)
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
compile_program = fluid.compiler.CompiledProgram(
fluid.default_main_program()).with_data_parallel(
loss_name=loss.name)
reader = paddle.batch(paddle.dataset.mnist.train(), batch_size=32)
feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
num = 4
for i, data in enumerate(reader()):
outs, = exe.run(compile_program,
feed=feeder.feed(data),
fetch_list=[loss])
if i == num:
break
return outs
class CustomOpTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
os.environ['CPU_NUM'] = str(2)
def test_cpu(self):
actual = custom_op_test(False, True)
expect = custom_op_test(False, False)
self.assertEqual(actual.all(), expect.all())
def test_gpu(self):
if not fluid.core.is_compiled_with_cuda():
return
actual = custom_op_test(True, True)
expect = custom_op_test(True, False)
self.assertEqual(actual.all(), expect.all())
if __name__ == '__main__':
unittest.main()