You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
139 lines
4.2 KiB
139 lines
4.2 KiB
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <iostream>
|
|
#include <vector>
|
|
|
|
#include "paddle/extension.h"
|
|
|
|
template <typename data_t>
|
|
void assign_cpu_kernel(const data_t* x_data,
|
|
data_t* out_data,
|
|
int64_t x_numel) {
|
|
for (int i = 0; i < x_numel; ++i) {
|
|
out_data[i] = x_data[i];
|
|
}
|
|
}
|
|
|
|
std::vector<std::vector<int64_t>> InferShape(std::vector<int64_t> x_shape) {
|
|
return {x_shape};
|
|
}
|
|
|
|
std::vector<paddle::DataType> InferDType(paddle::DataType x_dtype) {
|
|
return {x_dtype};
|
|
}
|
|
|
|
std::vector<paddle::Tensor> DispatchTestInterger(const paddle::Tensor& x) {
|
|
auto out = paddle::Tensor(paddle::PlaceType::kCPU);
|
|
out.reshape(x.shape());
|
|
|
|
PD_DISPATCH_INTEGRAL_TYPES(
|
|
x.type(), "assign_cpu_kernel", ([&] {
|
|
assign_cpu_kernel<data_t>(
|
|
x.data<data_t>(), out.mutable_data<data_t>(), x.size());
|
|
}));
|
|
|
|
return {out};
|
|
}
|
|
|
|
PD_BUILD_OP("dispatch_test_integer")
|
|
.Inputs({"X"})
|
|
.Outputs({"Out"})
|
|
.SetKernelFn(PD_KERNEL(DispatchTestInterger))
|
|
.SetInferShapeFn(PD_INFER_SHAPE(InferShape))
|
|
.SetInferDtypeFn(PD_INFER_DTYPE(InferDType));
|
|
|
|
std::vector<paddle::Tensor> DispatchTestComplex(const paddle::Tensor& x) {
|
|
auto out = paddle::Tensor(paddle::PlaceType::kCPU);
|
|
out.reshape(x.shape());
|
|
|
|
PD_DISPATCH_COMPLEX_TYPES(
|
|
x.type(), "assign_cpu_kernel", ([&] {
|
|
assign_cpu_kernel<data_t>(
|
|
x.data<data_t>(), out.mutable_data<data_t>(), x.size());
|
|
}));
|
|
|
|
return {out};
|
|
}
|
|
|
|
PD_BUILD_OP("dispatch_test_complex")
|
|
.Inputs({"X"})
|
|
.Outputs({"Out"})
|
|
.SetKernelFn(PD_KERNEL(DispatchTestComplex))
|
|
.SetInferShapeFn(PD_INFER_SHAPE(InferShape))
|
|
.SetInferDtypeFn(PD_INFER_DTYPE(InferDType));
|
|
|
|
std::vector<paddle::Tensor> DispatchTestFloatAndInteger(
|
|
const paddle::Tensor& x) {
|
|
auto out = paddle::Tensor(paddle::PlaceType::kCPU);
|
|
out.reshape(x.shape());
|
|
|
|
PD_DISPATCH_FLOATING_AND_INTEGRAL_TYPES(
|
|
x.type(), "assign_cpu_kernel", ([&] {
|
|
assign_cpu_kernel<data_t>(
|
|
x.data<data_t>(), out.mutable_data<data_t>(), x.size());
|
|
}));
|
|
|
|
return {out};
|
|
}
|
|
|
|
PD_BUILD_OP("dispatch_test_float_and_integer")
|
|
.Inputs({"X"})
|
|
.Outputs({"Out"})
|
|
.SetKernelFn(PD_KERNEL(DispatchTestFloatAndInteger))
|
|
.SetInferShapeFn(PD_INFER_SHAPE(InferShape))
|
|
.SetInferDtypeFn(PD_INFER_DTYPE(InferDType));
|
|
|
|
std::vector<paddle::Tensor> DispatchTestFloatAndComplex(
|
|
const paddle::Tensor& x) {
|
|
auto out = paddle::Tensor(paddle::PlaceType::kCPU);
|
|
out.reshape(x.shape());
|
|
|
|
PD_DISPATCH_FLOATING_AND_COMPLEX_TYPES(
|
|
x.type(), "assign_cpu_kernel", ([&] {
|
|
assign_cpu_kernel<data_t>(
|
|
x.data<data_t>(), out.mutable_data<data_t>(), x.size());
|
|
}));
|
|
|
|
return {out};
|
|
}
|
|
|
|
PD_BUILD_OP("dispatch_test_float_and_complex")
|
|
.Inputs({"X"})
|
|
.Outputs({"Out"})
|
|
.SetKernelFn(PD_KERNEL(DispatchTestFloatAndComplex))
|
|
.SetInferShapeFn(PD_INFER_SHAPE(InferShape))
|
|
.SetInferDtypeFn(PD_INFER_DTYPE(InferDType));
|
|
|
|
std::vector<paddle::Tensor> DispatchTestFloatAndIntegerAndComplex(
|
|
const paddle::Tensor& x) {
|
|
auto out = paddle::Tensor(paddle::PlaceType::kCPU);
|
|
out.reshape(x.shape());
|
|
|
|
PD_DISPATCH_FLOATING_AND_INTEGRAL_AND_COMPLEX_TYPES(
|
|
x.type(), "assign_cpu_kernel", ([&] {
|
|
assign_cpu_kernel<data_t>(
|
|
x.data<data_t>(), out.mutable_data<data_t>(), x.size());
|
|
}));
|
|
|
|
return {out};
|
|
}
|
|
|
|
PD_BUILD_OP("dispatch_test_float_and_integer_and_complex")
|
|
.Inputs({"X"})
|
|
.Outputs({"Out"})
|
|
.SetKernelFn(PD_KERNEL(DispatchTestFloatAndIntegerAndComplex))
|
|
.SetInferShapeFn(PD_INFER_SHAPE(InferShape))
|
|
.SetInferDtypeFn(PD_INFER_DTYPE(InferDType));
|