You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_inplace.py

100 lines
3.5 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
class TestInplace(unittest.TestCase):
def test_forward_version(self):
with paddle.fluid.dygraph.guard():
var = paddle.to_tensor(np.ones((4, 2, 3)).astype(np.float32))
self.assertEqual(var.inplace_version, 0)
var[0] = 1.1
self.assertEqual(var.inplace_version, 1)
paddle.assign(paddle.ones(shape=[3]), var)
# NOTE(liym27): assign(input, output) is an inplace operation for output.
# There is inplace-related processing for api assign, var.inplace_version should be 2 not 1.
self.assertEqual(var.inplace_version, 2)
var[2] = 3
self.assertEqual(var.inplace_version, 3)
def test_backward_error(self):
# It raises an error because the inplace operator will result
# in incorrect gradient computation.
with paddle.fluid.dygraph.guard():
var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
var_a.stop_gradient = False
var_b = var_a**2
# Here, the gradient computation will use the value of var_b
var_c = var_b**2
var_b[1:2] = 3.3 # var_b is modified inplace after using it
var_d = var_b**2
loss = paddle.nn.functional.relu(var_c + var_d)
with self.assertRaisesRegexp(
RuntimeError,
"received tensor_version:{} != wrapper_version_snapshot:{}".
format(1, 0)):
loss.backward()
def test_backward_success_1(self):
# var_b is modified inplace before using it, the inplace operator doesn't result
# in incorrect gradient computation.
with paddle.fluid.dygraph.guard():
var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
var_a.stop_gradient = False
var_b = var_a**2
var_b[1:2] = 3 # var_b is modified inplace before using it
# Here, the gradient computation will use the value of var_b
var_c = var_b**2
loss = var_c.sum()
loss.backward()
def test_backward_success_2(self):
# Although var_b is modified inplace after using it, it does not used in gradient computation.
# The inplace operator doesn't result in incorrect gradient computation.
with paddle.fluid.dygraph.guard():
var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
var_a.stop_gradient = False
var_b = var_a**2
var_b[1:2] = 3 # var_b is modified inplace before using it
var_c = var_b + var_b # Here, the grad op of sum doesn't use the value of var_b
loss = var_c.sum()
var_b[1:2] = 3 # var_b is modified inplace after using it
loss.backward()
if __name__ == '__main__':
unittest.main()