You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/yolov3_loss_op.h

456 lines
16 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T>
static inline bool LessEqualZero(T x) {
return x < 1e-6;
}
template <typename T>
static T SCE(T x, T label) {
return (x > 0 ? x : 0.0) - x * label + std::log(1.0 + std::exp(-std::abs(x)));
}
template <typename T>
static T L1Loss(T x, T y) {
return std::abs(y - x);
}
template <typename T>
static T SCEGrad(T x, T label) {
return 1.0 / (1.0 + std::exp(-x)) - label;
}
template <typename T>
static T L1LossGrad(T x, T y) {
return x > y ? 1.0 : -1.0;
}
static int GetMaskIndex(std::vector<int> mask, int val) {
for (size_t i = 0; i < mask.size(); i++) {
if (mask[i] == val) {
return i;
}
}
return -1;
}
template <typename T>
struct Box {
float x, y, w, h;
};
template <typename T>
static inline T sigmoid(T x) {
return 1.0 / (1.0 + std::exp(-x));
}
template <typename T>
static inline Box<T> GetYoloBox(const T* x, std::vector<int> anchors, int i,
int j, int an_idx, int grid_size,
int input_size, int index, int stride) {
Box<T> b;
b.x = (i + sigmoid<T>(x[index])) / grid_size;
b.y = (j + sigmoid<T>(x[index + stride])) / grid_size;
b.w = std::exp(x[index + 2 * stride]) * anchors[2 * an_idx] / input_size;
b.h = std::exp(x[index + 3 * stride]) * anchors[2 * an_idx + 1] / input_size;
return b;
}
template <typename T>
static inline Box<T> GetGtBox(const T* gt, int batch, int max_boxes, int idx) {
Box<T> b;
b.x = gt[(batch * max_boxes + idx) * 4];
b.y = gt[(batch * max_boxes + idx) * 4 + 1];
b.w = gt[(batch * max_boxes + idx) * 4 + 2];
b.h = gt[(batch * max_boxes + idx) * 4 + 3];
return b;
}
template <typename T>
static inline T BoxOverlap(T c1, T w1, T c2, T w2) {
T l1 = c1 - w1 / 2.0;
T l2 = c2 - w2 / 2.0;
T left = l1 > l2 ? l1 : l2;
T r1 = c1 + w1 / 2.0;
T r2 = c2 + w2 / 2.0;
T right = r1 < r2 ? r1 : r2;
return right - left;
}
template <typename T>
static inline T CalcBoxIoU(Box<T> b1, Box<T> b2) {
T w = BoxOverlap(b1.x, b1.w, b2.x, b2.w);
T h = BoxOverlap(b1.y, b1.h, b2.y, b2.h);
T inter_area = (w < 0 || h < 0) ? 0.0 : w * h;
T union_area = b1.w * b1.h + b2.w * b2.h - inter_area;
return inter_area / union_area;
}
static inline int GetEntryIndex(int batch, int an_idx, int hw_idx, int an_num,
int an_stride, int stride, int entry) {
return (batch * an_num + an_idx) * an_stride + entry * stride + hw_idx;
}
template <typename T>
static void CalcBoxLocationLoss(T* loss, const T* input, Box<T> gt,
std::vector<int> anchors, int an_idx,
int box_idx, int gi, int gj, int grid_size,
int input_size, int stride) {
T tx = gt.x * grid_size - gi;
T ty = gt.y * grid_size - gj;
T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);
T scale = 2.0 - gt.w * gt.h;
loss[0] += SCE<T>(input[box_idx], tx) * scale;
loss[0] += SCE<T>(input[box_idx + stride], ty) * scale;
loss[0] += L1Loss<T>(input[box_idx + 2 * stride], tw) * scale;
loss[0] += L1Loss<T>(input[box_idx + 3 * stride], th) * scale;
}
template <typename T>
static void CalcBoxLocationLossGrad(T* input_grad, const T loss, const T* input,
Box<T> gt, std::vector<int> anchors,
int an_idx, int box_idx, int gi, int gj,
int grid_size, int input_size, int stride) {
T tx = gt.x * grid_size - gi;
T ty = gt.y * grid_size - gj;
T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);
T scale = 2.0 - gt.w * gt.h;
input_grad[box_idx] = SCEGrad<T>(input[box_idx], tx) * scale * loss;
input_grad[box_idx + stride] =
SCEGrad<T>(input[box_idx + stride], ty) * scale * loss;
input_grad[box_idx + 2 * stride] =
L1LossGrad<T>(input[box_idx + 2 * stride], tw) * scale * loss;
input_grad[box_idx + 3 * stride] =
L1LossGrad<T>(input[box_idx + 3 * stride], th) * scale * loss;
}
template <typename T>
static inline void CalcLabelLoss(T* loss, const T* input, const int index,
const int label, const int class_num,
const int stride) {
for (int i = 0; i < class_num; i++) {
loss[0] += SCE<T>(input[index + i * stride], (i == label) ? 1.0 : 0.0);
}
}
template <typename T>
static inline void CalcLabelLossGrad(T* input_grad, const T loss,
const T* input, const int index,
const int label, const int class_num,
const int stride) {
for (int i = 0; i < class_num; i++) {
input_grad[index + i * stride] =
SCEGrad<T>(input[index + i * stride], (i == label) ? 1.0 : 0.0) * loss;
}
}
template <typename T>
static inline void CalcObjnessLoss(T* loss, const T* input, const int* objness,
const int n, const int an_num, const int h,
const int w, const int stride,
const int an_stride) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < an_num; j++) {
for (int k = 0; k < h; k++) {
for (int l = 0; l < w; l++) {
int obj = objness[k * w + l];
if (obj >= 0) {
loss[i] += SCE<T>(input[k * w + l], static_cast<T>(obj));
}
}
}
objness += stride;
input += an_stride;
}
}
}
template <typename T>
static inline void CalcObjnessLossGrad(T* input_grad, const T* loss,
const T* input, const int* objness,
const int n, const int an_num,
const int h, const int w,
const int stride, const int an_stride) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < an_num; j++) {
for (int k = 0; k < h; k++) {
for (int l = 0; l < w; l++) {
int obj = objness[k * w + l];
if (obj >= 0) {
input_grad[k * w + l] =
SCEGrad<T>(input[k * w + l], static_cast<T>(obj)) * loss[i];
}
}
}
objness += stride;
input += an_stride;
input_grad += an_stride;
}
}
}
template <typename T>
class Yolov3LossKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<Tensor>("X");
auto* gt_box = ctx.Input<Tensor>("GTBox");
auto* gt_label = ctx.Input<Tensor>("GTLabel");
auto* loss = ctx.Output<Tensor>("Loss");
auto anchors = ctx.Attr<std::vector<int>>("anchors");
auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
int class_num = ctx.Attr<int>("class_num");
float ignore_thresh = ctx.Attr<float>("ignore_thresh");
int downsample = ctx.Attr<int>("downsample");
const int n = input->dims()[0];
const int h = input->dims()[2];
const int w = input->dims()[3];
const int an_num = anchors.size() / 2;
const int mask_num = anchor_mask.size();
const int b = gt_box->dims()[1];
int input_size = downsample * h;
const T* input_data = input->data<T>();
const T* gt_box_data = gt_box->data<T>();
const int* gt_label_data = gt_label->data<int>();
T* loss_data = loss->mutable_data<T>({n}, ctx.GetPlace());
memset(loss_data, 0, loss->numel() * sizeof(T));
Tensor objness;
int* objness_data =
objness.mutable_data<int>({n, mask_num, h, w}, ctx.GetPlace());
memset(objness_data, 0, objness.numel() * sizeof(int));
const int stride = h * w;
const int an_stride = (class_num + 5) * stride;
for (int i = 0; i < n; i++) {
for (int j = 0; j < mask_num; j++) {
for (int k = 0; k < h; k++) {
for (int l = 0; l < w; l++) {
int box_idx =
GetEntryIndex(i, j, k * w + l, mask_num, an_stride, stride, 0);
Box<T> pred = GetYoloBox(input_data, anchors, l, k, anchor_mask[j],
h, input_size, box_idx, stride);
T best_iou = 0;
for (int t = 0; t < b; t++) {
Box<T> gt = GetGtBox(gt_box_data, i, b, t);
if (LessEqualZero<T>(gt.w) || LessEqualZero<T>(gt.h)) {
continue;
}
T iou = CalcBoxIoU(pred, gt);
if (iou > best_iou) {
best_iou = iou;
}
}
if (best_iou > ignore_thresh) {
int obj_idx = (i * mask_num + j) * stride + k * w + l;
objness_data[obj_idx] = -1;
}
}
}
}
for (int t = 0; t < b; t++) {
Box<T> gt = GetGtBox(gt_box_data, i, b, t);
if (LessEqualZero<T>(gt.w) || LessEqualZero<T>(gt.h)) {
continue;
}
int gi = static_cast<int>(gt.x * w);
int gj = static_cast<int>(gt.y * h);
Box<T> gt_shift = gt;
gt_shift.x = 0.0;
gt_shift.y = 0.0;
T best_iou = 0.0;
int best_n = 0;
for (int an_idx = 0; an_idx < an_num; an_idx++) {
Box<T> an_box;
an_box.x = 0.0;
an_box.y = 0.0;
an_box.w = anchors[2 * an_idx] / static_cast<T>(input_size);
an_box.h = anchors[2 * an_idx + 1] / static_cast<T>(input_size);
float iou = CalcBoxIoU<T>(an_box, gt_shift);
// TO DO: iou > 0.5 ?
if (iou > best_iou) {
best_iou = iou;
best_n = an_idx;
}
}
int mask_idx = GetMaskIndex(anchor_mask, best_n);
if (mask_idx >= 0) {
int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
an_stride, stride, 0);
CalcBoxLocationLoss<T>(loss_data + i, input_data, gt, anchors, best_n,
box_idx, gi, gj, h, input_size, stride);
int obj_idx = (i * mask_num + mask_idx) * stride + gj * w + gi;
objness_data[obj_idx] = 1;
int label = gt_label_data[i * b + t];
int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
an_stride, stride, 5);
CalcLabelLoss<T>(loss_data + i, input_data, label_idx, label,
class_num, stride);
}
}
}
CalcObjnessLoss<T>(loss_data, input_data + 4 * stride, objness_data, n,
mask_num, h, w, stride, an_stride);
}
};
template <typename T>
class Yolov3LossGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<Tensor>("X");
auto* gt_box = ctx.Input<Tensor>("GTBox");
auto* gt_label = ctx.Input<Tensor>("GTLabel");
auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* loss_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));
auto anchors = ctx.Attr<std::vector<int>>("anchors");
auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
int class_num = ctx.Attr<int>("class_num");
float ignore_thresh = ctx.Attr<float>("ignore_thresh");
int downsample = ctx.Attr<int>("downsample");
const int n = input->dims()[0];
const int c = input->dims()[1];
const int h = input->dims()[2];
const int w = input->dims()[3];
const int an_num = anchors.size() / 2;
const int mask_num = anchor_mask.size();
const int b = gt_box->dims()[1];
int input_size = downsample * h;
const T* input_data = input->data<T>();
const T* gt_box_data = gt_box->data<T>();
const int* gt_label_data = gt_label->data<int>();
const T* loss_grad_data = loss_grad->data<T>();
T* input_grad_data =
input_grad->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
memset(input_grad_data, 0, input_grad->numel() * sizeof(T));
Tensor objness;
int* objness_data =
objness.mutable_data<int>({n, mask_num, h, w}, ctx.GetPlace());
memset(objness_data, 0, objness.numel() * sizeof(int));
const int stride = h * w;
const int an_stride = (class_num + 5) * stride;
for (int i = 0; i < n; i++) {
for (int j = 0; j < mask_num; j++) {
for (int k = 0; k < h; k++) {
for (int l = 0; l < w; l++) {
int box_idx =
GetEntryIndex(i, j, k * w + l, mask_num, an_stride, stride, 0);
Box<T> pred = GetYoloBox(input_data, anchors, l, k, anchor_mask[j],
h, input_size, box_idx, stride);
T best_iou = 0;
for (int t = 0; t < b; t++) {
Box<T> gt = GetGtBox(gt_box_data, i, b, t);
if (LessEqualZero<T>(gt.w) || LessEqualZero<T>(gt.h)) {
continue;
}
T iou = CalcBoxIoU(pred, gt);
if (iou > best_iou) {
best_iou = iou;
}
}
if (best_iou > ignore_thresh) {
int obj_idx = (i * mask_num + j) * stride + k * w + l;
objness_data[obj_idx] = -1;
}
}
}
}
for (int t = 0; t < b; t++) {
Box<T> gt = GetGtBox(gt_box_data, i, b, t);
if (LessEqualZero<T>(gt.w) || LessEqualZero<T>(gt.h)) {
continue;
}
int gi = static_cast<int>(gt.x * w);
int gj = static_cast<int>(gt.y * h);
Box<T> gt_shift = gt;
gt_shift.x = 0.0;
gt_shift.y = 0.0;
T best_iou = 0.0;
int best_n = 0;
for (int an_idx = 0; an_idx < an_num; an_idx++) {
Box<T> an_box;
an_box.x = 0.0;
an_box.y = 0.0;
an_box.w = anchors[2 * an_idx] / static_cast<T>(input_size);
an_box.h = anchors[2 * an_idx + 1] / static_cast<T>(input_size);
float iou = CalcBoxIoU<T>(an_box, gt_shift);
// TO DO: iou > 0.5 ?
if (iou > best_iou) {
best_iou = iou;
best_n = an_idx;
}
}
int mask_idx = GetMaskIndex(anchor_mask, best_n);
if (mask_idx >= 0) {
int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
an_stride, stride, 0);
CalcBoxLocationLossGrad<T>(input_grad_data, loss_grad_data[i],
input_data, gt, anchors, best_n, box_idx,
gi, gj, h, input_size, stride);
int obj_idx = (i * mask_num + mask_idx) * stride + gj * w + gi;
objness_data[obj_idx] = 1;
int label = gt_label_data[i * b + t];
int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
an_stride, stride, 5);
CalcLabelLossGrad<T>(input_grad_data, loss_grad_data[i], input_data,
label_idx, label, class_num, stride);
}
}
}
CalcObjnessLossGrad<T>(input_grad_data + 4 * stride, loss_grad_data,
input_data + 4 * stride, objness_data, n, mask_num,
h, w, stride, an_stride);
}
};
} // namespace operators
} // namespace paddle