You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
97 lines
3.1 KiB
97 lines
3.1 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import paddle
|
|
import numpy as np
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.dygraph as dg
|
|
|
|
|
|
class TestComplexGetitemLayer(unittest.TestCase):
|
|
def setUp(self):
|
|
self._places = [fluid.CPUPlace()]
|
|
if fluid.core.is_compiled_with_cuda():
|
|
self._places.append(fluid.CUDAPlace(0))
|
|
|
|
def test_case1(self):
|
|
x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
|
|
x_np_slice = x_np[0]
|
|
|
|
for place in self._places:
|
|
with dg.guard(place):
|
|
x_var = dg.to_variable(x_np)
|
|
x_var_slice = x_var[0]
|
|
|
|
np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)
|
|
|
|
def test_case2(self):
|
|
x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
|
|
x_np_slice = x_np[0][1]
|
|
|
|
for place in self._places:
|
|
with dg.guard(place):
|
|
x_var = dg.to_variable(x_np)
|
|
x_var_slice = x_var[0][1]
|
|
|
|
np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)
|
|
|
|
def test_case3(self):
|
|
x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
|
|
x_np_slice = x_np[0][1][2]
|
|
|
|
for place in self._places:
|
|
with dg.guard(place):
|
|
x_var = dg.to_variable(x_np)
|
|
x_var_slice = x_var[0][1][2]
|
|
|
|
np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)
|
|
|
|
def test_case4(self):
|
|
x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
|
|
x_np_slice = x_np[0][1][0:3]
|
|
|
|
for place in self._places:
|
|
with dg.guard(place):
|
|
x_var = dg.to_variable(x_np)
|
|
x_var_slice = x_var[0][1][0:3]
|
|
|
|
np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)
|
|
|
|
def test_case5(self):
|
|
x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
|
|
x_np_slice = x_np[0][1][0:4:2]
|
|
|
|
for place in self._places:
|
|
with dg.guard(place):
|
|
x_var = dg.to_variable(x_np)
|
|
x_var_slice = x_var[0][1][0:4:2]
|
|
|
|
np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)
|
|
|
|
def test_case6(self):
|
|
x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
|
|
x_np_slice = x_np[0][1:3][0:4:2]
|
|
|
|
for place in self._places:
|
|
with dg.guard(place):
|
|
x_var = dg.to_variable(x_np)
|
|
x_var_slice = x_var[0][1:3][0:4:2]
|
|
|
|
np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|