You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_complex_getitem.py

97 lines
3.1 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
class TestComplexGetitemLayer(unittest.TestCase):
def setUp(self):
self._places = [fluid.CPUPlace()]
if fluid.core.is_compiled_with_cuda():
self._places.append(fluid.CUDAPlace(0))
def test_case1(self):
x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
x_np_slice = x_np[0]
for place in self._places:
with dg.guard(place):
x_var = dg.to_variable(x_np)
x_var_slice = x_var[0]
np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)
def test_case2(self):
x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
x_np_slice = x_np[0][1]
for place in self._places:
with dg.guard(place):
x_var = dg.to_variable(x_np)
x_var_slice = x_var[0][1]
np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)
def test_case3(self):
x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
x_np_slice = x_np[0][1][2]
for place in self._places:
with dg.guard(place):
x_var = dg.to_variable(x_np)
x_var_slice = x_var[0][1][2]
np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)
def test_case4(self):
x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
x_np_slice = x_np[0][1][0:3]
for place in self._places:
with dg.guard(place):
x_var = dg.to_variable(x_np)
x_var_slice = x_var[0][1][0:3]
np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)
def test_case5(self):
x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
x_np_slice = x_np[0][1][0:4:2]
for place in self._places:
with dg.guard(place):
x_var = dg.to_variable(x_np)
x_var_slice = x_var[0][1][0:4:2]
np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)
def test_case6(self):
x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
x_np_slice = x_np[0][1:3][0:4:2]
for place in self._places:
with dg.guard(place):
x_var = dg.to_variable(x_np)
x_var_slice = x_var[0][1:3][0:4:2]
np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)
if __name__ == '__main__':
unittest.main()