Paddle/python/paddle/v2/__init__.py

116 lines
3.2 KiB

# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import optimizer
import layer
import activation
import parameters
import trainer
import event
import data_type
import topology
import networks
import evaluator
from . import dataset
from . import reader
from . import plot
import attr
import op
import pooling
import inference
import networks
import minibatch
import plot
import image
import paddle.trainer.config_parser as cp
__all__ = [
'default_startup_program',
'default_main_program',
'optimizer',
'layer',
'activation',
'parameters',
'init',
'trainer',
'event',
'data_type',
'attr',
'pooling',
'dataset',
'reader',
'topology',
'networks',
'infer',
'plot',
'evaluator',
'image',
'master',
]
cp.begin_parse()
def init(**kwargs):
import py_paddle.swig_paddle as api
args = []
args_dict = {}
# NOTE: append arguments if they are in ENV
for ek, ev in os.environ.iteritems():
if ek.startswith("PADDLE_INIT_"):
args_dict[ek.replace("PADDLE_INIT_", "").lower()] = str(ev)
args_dict.update(kwargs)
# NOTE: overwrite arguments from ENV if it is in kwargs
for key in args_dict.keys():
args.append('--%s=%s' % (key, str(args_dict[key])))
# auto set cpu environment
def set_env(key, value):
'''If the key has not been set in the environment, set it with value.'''
assert isinstance(key, str)
assert isinstance(value, str)
envset = os.environ.get(key)
if envset is None:
os.environ[key] = value
ht = os.popen("lscpu |grep \"per core\"|awk -F':' '{print $2}'|xargs")
ht = int(ht.read())
if ht == 1: # ht is off
set_env("OMP_DYNAMIC", "false")
set_env("KMP_AFFINITY", "granularity=fine,compact,0,0")
else:
set_env("OMP_DYNAMIC", "true")
set_env("KMP_AFFINITY", "granularity=fine,compact,1,0")
processors = os.popen("grep \"processor\" /proc/cpuinfo|sort -u|wc -l")
processors = int(processors.read())
trainers = kwargs.get('trainer_count', 1)
threads = processors / trainers
threads = '1' if threads < 1 else str(threads)
set_env("OMP_NUM_THREADS", threads)
set_env("MKL_NUM_THREADS", threads)
if 'use_gpu' in kwargs:
cp.g_command_config_args['use_gpu'] = kwargs['use_gpu']
if 'use_mkldnn' in kwargs:
cp.g_command_config_args['use_mkldnn'] = kwargs['use_mkldnn']
assert 'parallel_nn' not in kwargs, ("currently 'parallel_nn' is not "
"supported in v2 APIs.")
api.initPaddle(*args)
infer = inference.infer
batch = minibatch.batch