You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/contrib/slim/distillation/distiller.py

277 lines
12 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .... import layers
from .... import optimizer
from .... import Executor
from .... import Program
from .... import program_guard
from .... import regularizer
__all__ = ['FSPDistiller', 'L2Distiller', 'SoftLabelDistiller']
class L2Distiller(object):
"""
Combine two layers from student net and teacher net by l2-loss.
And add the loss into the total loss using for distillation training.
"""
def __init__(self,
student_feature_map,
teacher_feature_map,
distillation_loss_weight=1):
"""
Args:
student_feature_map(str): The name of feature map from student network.
teacher_feature_map(str): The name of feature map from teacher network.
It's shape should be the same with student network.
distillation_loss_weight(float): The weight of the l2-loss.
"""
self.student_feature_map = student_feature_map
self.teacher_feature_map = teacher_feature_map
self.distillation_loss_weight = distillation_loss_weight
def distiller_loss(self, graph):
"""
Modify graph inplace to add l2-loss.
Args:
graph(GraphWrapper): The graph to be modified.
Returns:
GraphWrapper: The modified graph.
"""
distiller_pass = L2DistillerPass(self.student_feature_map,
self.teacher_feature_map,
self.distillation_loss_weight)
dis_graph = distiller_pass.apply(graph)
return dis_graph
class L2DistillerPass(object):
"""
The pass used to add l2-loss.
"""
def __init__(self,
student_feature_map,
teacher_feature_map,
distillation_loss_weight=1):
"""
Args:
student_feature_map(str): The name of feature map from student network.
teacher_feature_map(str): The name of feature map from teacher network.
It's shape should be the same with student network.
distillation_loss_weight(float): The weight of the l2-loss.
"""
self.student_feature_map = student_feature_map
self.teacher_feature_map = teacher_feature_map
self.distillation_loss_weight = distillation_loss_weight
def apply(self, graph):
ret_graph = graph
with program_guard(ret_graph.program):
student_feature_map = ret_graph.var(self.student_feature_map)._var
teacher_feature_map = ret_graph.var(self.teacher_feature_map)._var
l2loss = layers.reduce_mean(
layers.square(student_feature_map - teacher_feature_map))
distillation_loss = l2loss * self.distillation_loss_weight
student_loss = ret_graph.var(ret_graph.out_nodes['loss'])._var
loss = distillation_loss + student_loss
ret_graph.out_nodes[
'l2loss_' + self.student_feature_map + "_" +
self.teacher_feature_map] = distillation_loss.name
ret_graph.out_nodes['loss'] = loss.name
return ret_graph
class FSPDistiller(object):
"""
Combine layers from student net and teacher net by fsp-loss.
"""
def __init__(self, student_pairs, teacher_pairs,
distillation_loss_weight=1):
"""
Args:
student_pairs(list<tuple>): Each tuple, with two variable names, in student_pairs indicates
a section in student network. The variables in a tuple should
have the same feature map size.
teacher_pairs(list<tuple>): Each tuple, with two variable names, in teacher_pairs indicates
a section in teacher network. The variables in a tuple should
have the same feature map size. Varibale named teacher_pairs[i][j]
should has the save channel number with that of variable named
student_pairs[i][j].
distillation_loss_weight(float): The weight of the fsp-loss. default: 1.
"""
self.student_pairs = student_pairs
self.teacher_pairs = teacher_pairs
self.distillation_loss_weight = distillation_loss_weight
def distiller_loss(self, graph):
"""
Modify graph inplace to add fsp-loss.
Args:
graph(GraphWrapper): The graph to be modified.
Returns:
GraphWrapper: The modified graph.
"""
distiller_pass = FSPDistillerPass(self.student_pairs,
self.teacher_pairs,
self.distillation_loss_weight)
dis_graph = distiller_pass.apply(graph)
return dis_graph
class FSPDistillerPass(object):
'''
Combine layers from student net and teacher net by fsp-loss.
'''
def __init__(self, s_pairs, t_pairs, distillation_loss_weight=1):
"""
Args:
s_pairs(list<tuple>): Each tuple, with two variable names, in student_pairs indicates
a section in student network. The variables in a tuple should
have the same feature map size.
t_pairs(list<tuple>): Each tuple, with two variable names, in teacher_pairs indicates
a section in teacher network. The variables in a tuple should
have the same feature map size. Varibale named teacher_pairs[i][j]
should has the save channel number with that of variable named
student_pairs[i][j].
distillation_loss_weight(float): The weight of the fsp-loss. default: 1.
"""
self.s_pairs = s_pairs
self.t_pairs = t_pairs
self.distillation_loss_weight = distillation_loss_weight
def apply(self, graph):
ret_graph = graph
with program_guard(ret_graph.program):
losses = []
for s_pair, t_pair in zip(self.s_pairs, self.t_pairs):
s_pair_start = ret_graph.var(s_pair[0])._var
s_pair_end = ret_graph.var(s_pair[1])._var
s_fsp_matrix = self._fsp_matrix(s_pair_start, s_pair_end)
t_pair_start = ret_graph.var(t_pair[0])._var
t_pair_end = ret_graph.var(t_pair[1])._var
t_fsp_matrix = self._fsp_matrix(t_pair_start, t_pair_end)
l2_loss = layers.reduce_mean(
layers.square(s_fsp_matrix - t_fsp_matrix))
losses.append(l2_loss)
distillation_loss = layers.sum(
losses) * self.distillation_loss_weight
student_loss = ret_graph.var(ret_graph.out_nodes['loss'])._var
loss = distillation_loss + student_loss
ret_graph.out_nodes[
'fsp_distillation_loss'] = distillation_loss.name
ret_graph.out_nodes['loss'] = loss.name
return ret_graph
def _fsp_matrix(self, fea_map_0, fea_map_1):
return layers.fsp_matrix(fea_map_0, fea_map_1)
class SoftLabelDistiller(object):
"""
Combine two layers from student net and teacher net by softmax_with_cross_entropy loss.
And add the loss into the total loss using for distillation training.
"""
def __init__(self,
student_feature_map=None,
teacher_feature_map=None,
student_temperature=1.0,
teacher_temperature=1.0,
distillation_loss_weight=1):
"""
Args:
student_feature_map(str): The name of feature map from student network.
teacher_feature_map(str): The name of feature map from teacher network.
It's shape should be the same with student network.
student_temperature(float): Temperature used to divide student_feature_map before softmax_with_cross_entropy. default: 1.0
teacher_temperature(float): Temperature used to divide teacher_feature_map before softmax_with_cross_entropy. default: 1.0
distillation_loss_weight(float): The weight of the l2-loss.
"""
self.student_feature_map = student_feature_map
self.teacher_feature_map = teacher_feature_map
self.distillation_loss_weight = distillation_loss_weight
self.student_temperature = student_temperature
self.teacher_temperature = teacher_temperature
def distiller_loss(self, graph):
"""
Modify graph inplace to add softmax_with_cross_entropy loss.
Args:
graph(GraphWrapper): The graph to be modified.
Returns:
GraphWrapper: The modified graph.
"""
distiller_pass = SoftLabelDistillerPass(
self.student_feature_map, self.teacher_feature_map,
self.student_temperature, self.teacher_temperature,
self.distillation_loss_weight)
dis_graph = distiller_pass.apply(graph)
return dis_graph
class SoftLabelDistillerPass(object):
def __init__(self,
student_feature_map,
teacher_feature_map,
student_temperature,
teacher_temperature,
distillation_loss_weight=1):
"""
Args:
student_feature_map(str): The name of feature map from student network.
teacher_feature_map(str): The name of feature map from teacher network.
It's shape should be the same with student network.
student_temperature(float): Temperature used to divide student_feature_map before softmax_with_cross_entropy.
teacher_temperature(float): Temperature used to divide teacher_feature_map before softmax_with_cross_entropy.
distillation_loss_weight(float): The weight of the l2-loss.
"""
self.student_feature_map = student_feature_map
self.teacher_feature_map = teacher_feature_map
self.student_temperature = student_temperature
self.teacher_temperature = teacher_temperature
self.distillation_loss_weight = distillation_loss_weight
def apply(self, graph):
ret_graph = graph
with program_guard(ret_graph.program):
student_feature_map = ret_graph.var(self.student_feature_map)._var
teacher_feature_map = ret_graph.var(self.teacher_feature_map)._var
s_fea = student_feature_map / self.student_temperature
t_fea = teacher_feature_map / self.distillation_loss_weight
t_fea.stop_gradient = True
ce_loss = layers.softmax_with_cross_entropy(
s_fea, t_fea, soft_label=True)
distillation_loss = ce_loss * self.distillation_loss_weight
student_loss = ret_graph.var(ret_graph.out_nodes['loss'])._var
loss = distillation_loss + student_loss
ret_graph.out_nodes[
'soft_label_loss_' + self.student_feature_map + "_" +
self.teacher_feature_map] = distillation_loss.name
ret_graph.out_nodes['loss'] = loss.name
return ret_graph