You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
163 lines
4.8 KiB
163 lines
4.8 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/framework/executor.h"
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <vector>
|
|
#include "paddle/framework/lod_tensor.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/framework/scope.h"
|
|
|
|
#include <boost/range/adaptor/reversed.hpp>
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
|
|
Executor::Executor(const std::vector<platform::Place>& places) {
|
|
device_contexts_.resize(places.size());
|
|
for (size_t i = 0; i < places.size(); i++) {
|
|
if (platform::is_cpu_place(places[i])) {
|
|
device_contexts_[i] = new platform::CPUDeviceContext(
|
|
boost::get<platform::CPUPlace>(places[i]));
|
|
} else if (platform::is_gpu_place(places[i])) {
|
|
#ifdef PADDLE_WITH_CUDA
|
|
device_contexts_[i] = new platform::CUDADeviceContext(
|
|
boost::get<platform::GPUPlace>(places[i]));
|
|
#else
|
|
PADDLE_THROW("'GPUPlace' is not supported in CPU only device.");
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
Executor::~Executor() {
|
|
for (auto& device_context : device_contexts_) {
|
|
if (device_context) {
|
|
delete device_context;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Executor::Run(const ProgramDesc& pdesc, Scope* scope) {
|
|
// TODO(tonyyang-svail):
|
|
// - only runs the first block
|
|
// - only runs on the first device
|
|
// - test on gpu
|
|
auto& block = pdesc.blocks(0);
|
|
auto& device = device_contexts_[0];
|
|
|
|
// TODO(tonyyang-svail):
|
|
// - runs on a new local scope
|
|
// Scope& local_scope = scope->NewScope();
|
|
|
|
for (auto& var : block.vars()) {
|
|
scope->NewVar(var.name());
|
|
}
|
|
|
|
std::vector<bool> should_run = Preprocess(pdesc);
|
|
PADDLE_ENFORCE(should_run.size() == block.ops_size());
|
|
for (size_t i = 0; i < should_run.size(); ++i) {
|
|
if (should_run[i]) {
|
|
auto op = paddle::framework::OpRegistry::CreateOp(block.ops(i));
|
|
op->Run(*scope, *device);
|
|
}
|
|
}
|
|
|
|
// // print tensor value
|
|
// for (auto& var : block.vars()) {
|
|
// std::cout << var.name() << std::endl;
|
|
// auto v = scope->FindVar(var.name());
|
|
// const LoDTensor& t = v->Get<LoDTensor>();
|
|
// for (int i = 0; i < t.numel(); ++i) {
|
|
// std::cout << t.data<float>()[i] << " ";
|
|
// }
|
|
// std::cout << std::endl;
|
|
// }
|
|
}
|
|
|
|
std::vector<bool> Executor::Preprocess(const ProgramDesc& pdesc) {
|
|
// TODO(tonyyang-svail):
|
|
// - only runs the first block
|
|
|
|
auto& block = pdesc.blocks(0);
|
|
auto& ops = block.ops();
|
|
|
|
bool expect_feed = true;
|
|
for (auto& op_desc : ops) {
|
|
PADDLE_ENFORCE(op_desc.type() != "feed" || expect_feed,
|
|
"All FeedOps are at the beginning of the ProgramDesc");
|
|
expect_feed = (op_desc.type() == "feed");
|
|
}
|
|
|
|
bool expect_fetch = true;
|
|
for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) {
|
|
auto& op_desc = *op_iter;
|
|
PADDLE_ENFORCE(op_desc.type() != "fetch" || expect_fetch,
|
|
"All FetchOps must at the end of the ProgramDesc");
|
|
expect_fetch = (op_desc.type() == "fetch");
|
|
}
|
|
|
|
std::set<std::string> dependent_vars;
|
|
std::vector<bool> should_run;
|
|
for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) {
|
|
auto& op_desc = *op_iter;
|
|
|
|
bool found_dependent_vars = false;
|
|
for (auto& var : op_desc.outputs()) {
|
|
for (auto& argu : var.arguments()) {
|
|
if (dependent_vars.count(argu) != 0) {
|
|
found_dependent_vars = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO(tonyyang-svail): add VLOG here for debugging
|
|
if (op_desc.type() == "fetch" || found_dependent_vars) {
|
|
// erase its output to the dependency graph
|
|
for (auto& var : op_desc.outputs()) {
|
|
for (auto& argu : var.arguments()) {
|
|
dependent_vars.erase(argu);
|
|
}
|
|
}
|
|
|
|
// insert its input to the dependency graph
|
|
for (auto& var : op_desc.inputs()) {
|
|
for (auto& argu : var.arguments()) {
|
|
dependent_vars.insert(argu);
|
|
}
|
|
}
|
|
|
|
// this op should be executed
|
|
should_run.push_back(true);
|
|
LOG(INFO) << "Yes " << op_desc.type();
|
|
} else {
|
|
// this op should NOT be executed
|
|
should_run.push_back(false);
|
|
LOG(INFO) << "No " << op_desc.type();
|
|
}
|
|
}
|
|
|
|
// since we are traversing the ProgramDesc in reverse order
|
|
// we reverse the should_run vector
|
|
std::reverse(should_run.begin(), should_run.end());
|
|
|
|
return should_run;
|
|
}
|
|
|
|
} // namespace framework
|
|
} // namespace paddle
|