You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/dygraph/base.py

228 lines
7.2 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..wrapped_decorator import signature_safe_contextmanager, wrap_decorator
import contextlib
import numpy as np
from paddle.fluid import core
from paddle.fluid import framework
from .tracer import Tracer
import logging
import objgraph
__all__ = [
'no_grad',
'guard',
'to_variable',
]
def _switch_to_static_graph_(func):
def __impl__(*args, **kwargs):
with framework._dygraph_guard(None):
return func(*args, **kwargs)
return __impl__
switch_to_static_graph = wrap_decorator(_switch_to_static_graph_)
@signature_safe_contextmanager
def program_desc_tracing_guard(enable):
tracer = framework._dygraph_tracer()
if tracer:
original_val = tracer._enable_program_desc_tracing
tracer._enable_program_desc_tracing = enable
yield
if tracer:
tracer._enable_program_desc_tracing = original_val
# This function should be removed in V1.6, because it can easily lead to cyclic dependencies.
def enabled():
# Internal use only
return framework.in_dygraph_mode()
@contextlib.contextmanager
def _switch_tracer_mode_guard_(is_train=True):
tracer = framework._dygraph_tracer()
if tracer:
mode = tracer._train_mode
tracer._train_mode = is_train
yield
tracer._train_mode = mode
else:
yield
def _no_grad_(func):
"""
This Decorator will avoid the func being decorated creating backward network in dygraph mode
Parameter:
- **func** (python func): the func don't need grad
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
@fluid.dygraph.no_grad
def test_layer():
with fluid.dygraph.guard():
inp = np.ones([3, 1024], dtype='float32')
t = fluid.dygraph.base.to_variable(inp)
linear1 = fluid.Linear(1024, 4, bias_attr=False)
linear2 = fluid.Linear(4, 4)
ret = linear1(t)
dy_ret = linear2(ret)
test_layer()
"""
def __impl__(*args, **kwargs):
with _switch_tracer_mode_guard_(is_train=False):
return func(*args, **kwargs)
return __impl__
no_grad = wrap_decorator(_no_grad_)
# for fluidDoc
no_grad.__doc__ = _no_grad_.__doc__
@signature_safe_contextmanager
def guard(place=None):
"""
This context will create a dygraph context for dygraph to run, using python ``with`` statement.
Parameters:
place(fluid.CPUPlace or fluid.CUDAPlace, optional): Place to execute dygraph.
If None, the running place will be determined according to the way of paddle compilation. Default: None
return:
None
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
with fluid.dygraph.guard():
inp = np.ones([3, 1024], dtype='float32')
t = fluid.dygraph.base.to_variable(inp)
linear1 = fluid.Linear(1024, 4, bias_attr=False)
linear2 = fluid.Linear(4, 4)
ret = linear1(t)
dy_ret = linear2(ret)
"""
train = framework.Program()
startup = framework.Program()
tracer = Tracer()
VarBase = core.VarBase
if place is None:
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
tracer._expected_place = place
with framework.program_guard(train, startup):
with framework.unique_name.guard():
with framework._dygraph_guard(tracer):
with framework._dygraph_place_guard(place):
yield
def _print_debug_msg(parameter_list, limit=5, is_test=False):
if not core._is_dygraph_debug_enabled():
logging.warn(
'Debug mode is not enabled. Please set FLAGS_dygraph_debug=1 to enable debug'
)
return
unique_name_size = len(framework.unique_name.generator.ids)
tracer_var_size = len(parameter_list)
alive_cpp_var_size = len(core.VarBase._alive_vars())
if not is_test:
logging.warn(
'unique_name num: {}, tracer vars num: {}, alive cpp vars num: {}'
.format(unique_name_size, tracer_var_size, alive_cpp_var_size))
objgraph.show_growth(limit=limit)
else:
return unique_name_size, tracer_var_size, alive_cpp_var_size
@framework.dygraph_only
def to_variable(value, name=None, zero_copy=None):
"""
The API will create a ``Variable`` object from numpy\.ndarray or Variable object.
Parameters:
value(ndarray|Variable): The numpy\.ndarray or Variable object that needs to be converted, it can be multi-dimension, and the data type is one of numpy\.{float16, float32, float64, int16, int32, int64, uint8, uint16}.
name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
zero_copy(bool, optional): Whether to share memory with the input numpy array. This parameter only works with CPUPlace and will be set to True when it is None. Default: None.
Returns:
Variable: If ``value`` is a numpy\.ndarray object, return ``Tensor`` created from the specified numpy\.ndarray object, which has same data type and shape with ``value``. If ``value`` is a Variable object, just return ``value``.
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
with fluid.dygraph.guard(fluid.CPUPlace()):
x = np.ones([2, 2], np.float32)
y = fluid.dygraph.to_variable(x, zero_copy=False)
x[0][0] = -1
y[0][0].numpy() # array([1.], dtype=float32)
y = fluid.dygraph.to_variable(x)
x[0][0] = 0
y[0][0].numpy() # array([0.], dtype=float32)
"""
if isinstance(value, np.ndarray):
assert framework.in_dygraph_mode(
), "to_variable could only be called in dygraph mode"
if isinstance(framework._current_expected_place(),
framework.core.CPUPlace):
if zero_copy is None:
zero_copy = True
else:
assert not zero_copy, "zero_copy mode can only be used with CPUPlace"
zero_copy = False
py_var = core.VarBase(
value=value,
place=framework._current_expected_place(),
persistable=False,
zero_copy=zero_copy,
name=name if name else '')
return py_var
elif isinstance(value, (core.VarBase, framework.Variable)):
return value
else:
raise TypeError(
"to_variable only accepts 'ndarray' and 'Variable' as value's input")