You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/io.py

1936 lines
76 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import errno
import warnings
import six
import logging
import pickle
import contextlib
from functools import reduce
import numpy as np
import paddle
import paddle.reader
from paddle.reader import *
from paddle.fluid import layers
from paddle.fluid.executor import Executor, global_scope
from paddle.fluid.evaluator import Evaluator
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, \
program_guard
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.log_helper import get_logger
from . import reader
from .reader import *
from . import core
from .. import compat as cpt
batch = paddle.batch
__all__ = [
'save_vars',
'save_params',
'save_persistables',
'load_vars',
'load_params',
'load_persistables',
'save_inference_model',
'load_inference_model',
'batch',
'save',
'load',
'load_program_state',
'set_program_state',
'get_program_parameter',
'get_program_persistable_vars',
] + reader.__all__ + paddle.reader.__all__
_logger = get_logger(
__name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
def is_parameter(var):
"""
Check whether the given variable is an instance of Parameter.
Args:
var(Variable): The variable to be checked.
Returns:
bool: True if the given `var` is an instance of Parameter,
False if not.
Examples:
.. code-block:: python
import paddle.fluid as fluid
param = fluid.default_main_program().global_block().var('fc.w')
res = fluid.io.is_parameter(param)
"""
return isinstance(var, Parameter)
def is_persistable(var):
"""
Check whether the given variable is persistable.
Args:
var(Variable): The variable to be checked.
Returns:
bool: True if the given `var` is persistable
False if not.
Examples:
.. code-block:: python
import paddle.fluid as fluid
param = fluid.default_main_program().global_block().var('fc.b')
res = fluid.io.is_persistable(param)
"""
if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
var.desc.type() == core.VarDesc.VarType.READER:
return False
return var.persistable
def is_belong_to_optimizer(var):
if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
return is_persistable(var)
return False
def get_program_parameter(program):
"""
Get all the parameters from Program.
Args:
var(Program): The Program to get parameters
Returns:
list: The list contains all parameters in the program
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.data(name="img", shape=[64, 784])
w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
list_para = fluid.io.get_program_parameter( fluid.default_main_program() )
"""
return list(filter(is_parameter, program.list_vars()))
def get_program_persistable_vars(program):
"""
Get all the persistable vars from Program.
Args:
var(Program): The Program to get persistable vars
Returns:
list: The list contains all persistable vars in the program
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.data(name="img", shape=[64, 784])
w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
list_para = fluid.io.get_program_persistable_vars( fluid.default_main_program() )
"""
return list(filter(is_persistable, program.list_vars()))
def _clone_var_in_block_(block, var):
assert isinstance(var, Variable)
if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
return block.create_var(
name=var.name,
shape=var.shape,
dtype=var.dtype,
type=var.type,
lod_level=var.lod_level,
persistable=True)
else:
return block.create_var(
name=var.name,
shape=var.shape,
dtype=var.dtype,
type=var.type,
persistable=True)
@contextlib.contextmanager
def _load_program_scope(main=None, startup=None, scope=None):
prog = main if main else paddle.fluid.Program()
startup_prog = startup if startup else paddle.fluid.Program()
scope = scope if scope else paddle.fluid.core.Scope()
with paddle.fluid.scope_guard(scope):
with paddle.fluid.program_guard(prog, startup_prog):
with paddle.fluid.unique_name.guard():
yield
def _get_valid_program(main_program):
if main_program is None:
main_program = default_main_program()
elif isinstance(main_program, CompiledProgram):
main_program = main_program._program
if main_program is None:
raise TypeError("program should be as Program type or None")
warnings.warn(
"The input is a CompiledProgram, this is not recommended.")
if not isinstance(main_program, Program):
raise TypeError("program should be as Program type or None")
return main_program
def save_vars(executor,
dirname,
main_program=None,
vars=None,
predicate=None,
filename=None):
"""
This API saves specific variables in the `Program` to files.
There are two ways to specify the variables to be saved: set variables in
a list and assign it to the `vars`, or use the `predicate` function to select
variables that make `predicate(variable) == True`. The first way has a higher priority.
The `dirname` is used to specify the folder where to save variables.
If you prefer to save variables in separate files in the `dirname` floder,
do not set `filename`. If you prefer to save all variables in a single file,
use `filename` to specify it.
Args:
executor(Executor): The executor to run for saving variables.
dirname(str): The folder where to save variables.
main_program(Program, optional): The program whose variables will be saved.
If it is None, the default main program will
be used automatically.
Default: None
vars(list[Variable], optional): The list contains all variables to be saved.
Default: None
predicate(function, optional): The function selects the variables that make
`predicate(variable) == True`.
Default: None
filename(str, optional): If you prefer to save all variables in a single file,
use `filename` to specify it. Otherwise, let `filename` be None.
Default: None
Returns:
None
Raises:
TypeError: If `main_program` is not an instance of Program nor None.
Examples:
.. code-block:: python
import paddle.fluid as fluid
main_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(main_prog, startup_prog):
data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
hidden_w = fluid.layers.matmul(x=data, y=w)
hidden_b = fluid.layers.elementwise_add(hidden_w, b)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
# The first usage: use `vars` to set the saved variables.
var_list = [w, b]
path = "./my_paddle_vars"
fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
filename="vars_file")
# w and b will be save in a file named "var_file".
# The second usage: use `predicate` to select the saved variable.
def name_has_fc(var):
res = "fc" in var.name
return res
param_path = "./my_paddle_model"
fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
# all variables whose names contain "fc " are saved.
"""
save_dirname = os.path.normpath(dirname)
main_program = _get_valid_program(main_program)
if vars is None:
save_vars(
executor,
main_program=main_program,
dirname=save_dirname,
vars=list(filter(predicate, main_program.list_vars())),
filename=filename)
else:
# give warning when there is no var in model
if len(list(vars)) == 0:
warnings.warn(
"no variable in your model, please ensure there are any variables in your model to save"
)
return None
save_program = Program()
save_block = save_program.global_block()
save_var_map = {}
for each_var in vars:
# NOTE: don't save the variable which type is RAW
if each_var.type == core.VarDesc.VarType.RAW:
continue
new_var = _clone_var_in_block_(save_block, each_var)
if filename is None:
save_file_path = os.path.join(save_dirname, new_var.name)
save_file_path = os.path.normpath(save_file_path)
save_block.append_op(
type='save',
inputs={'X': [new_var]},
outputs={},
attrs={'file_path': save_file_path})
else:
save_var_map[new_var.name] = new_var
if filename is not None:
save_var_list = []
for name in sorted(save_var_map.keys()):
save_var_list.append(save_var_map[name])
save_block.append_op(
type='save_combine',
inputs={'X': save_var_list},
outputs={},
attrs={'file_path': os.path.join(save_dirname, filename)})
#NOTE(zhiqiu): save op will add variable kLookupTablePath in save_program.desc,
# which leads to diff on save_program and its desc. Call _sync_with_cpp
# to keep consistency.
save_program._sync_with_cpp()
executor.run(save_program)
def save_params(executor, dirname, main_program=None, filename=None):
"""
This operator saves all parameters from the :code:`main_program` to
the folder :code:`dirname` or file :code:`filename`. You can refer to
:ref:`api_guide_model_save_reader_en` for more details.
Use the :code:`dirname` to specify the saving folder. If you would like to
save parameters in separate files, set :code:`filename` None; if you would
like to save all parameters in a single file, use :code:`filename` to specify
the file name.
Note:
Some variables are not Parameter while they are necessary for
training, such as learning rate, global step, etc. So you can NOT save
and continue your training just by :ref:`api_fluid_io_save_params`
and :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
and :ref:`api_fluid_io_load_persistables` instead.
If you want to save your model for the inference, please use the
:ref:`api_fluid_io_save_inference_model`. You can refer to
:ref:`api_guide_model_save_reader_en` for more details.
Args:
executor(Executor): The executor to run for saving parameters, You can
refer to :ref:`api_guide_executor_en`.
dirname(str): The saving directory path.
main_program(Program, optional): The program whose parameters will be
saved. You can refer to
:ref:`api_guide_Program_en` for more
details. If it is None, the default main
program will be used.
Default: None
filename(str, optional): The file to save all parameters. If you prefer
to save parameters in different files, set it
to None.
Default: None
Returns:
None
Examples:
.. code-block:: python
import paddle.fluid as fluid
params_path = "./my_paddle_model"
image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
label = fluid.data(name='label', shape=[None, 1], dtype='int64')
feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
predict = fluid.layers.fc(input=image, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=predict, label=label)
avg_loss = fluid.layers.mean(loss)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
fluid.io.save_params(executor=exe, dirname=params_path)
# The parameters weights and bias of the fc layer in the network are going to
# be saved in different files in the path "./my_paddle_model"
"""
save_vars(
executor,
dirname=dirname,
main_program=main_program,
vars=None,
predicate=is_parameter,
filename=filename)
def _save_distributed_persistables(executor, dirname, main_program):
"""
save_persistables for distributed training.
the method will do things listed below:
1.save part of persistable variables on trainer.
2.receive "remote prefetch variables" from parameter servers and merge them.
3.save "distributed lookup table" on parameter servers.
4.receive "optimizer variables" from parameter servers and merge them.
Args:
executor(Executor): The executor to run for saving parameters.
dirname(str): The saving directory path.
main_program(Program): The program whose parameters will be
saved. the main_program must be the trainer_program
get after transpiler.
Returns:
None
Examples:
.. code-block:: python
import paddle.fluid as fluid
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
t = distribute_transpiler.DistributeTranspiler()
t.transpile(...)
train_program = t.get_trainer_program()
_save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
"""
def __save_remote_params(executor, dirname, remote_params_map):
"""
recive params on pserver through rpc.
if the params are be sliced, will concat them to one, then save it.
"""
if not remote_params_map:
return
prog = Program()
block = prog.global_block()
# recv optimize vars from pserver
for name, remote_params in remote_params_map.items():
origin = remote_params[0].origin
is_slice = remote_params[0].is_slice
slices = [None] * len(remote_params)
slice_varnames = [None] * len(remote_params)
remote_varnames = [None] * len(remote_params)
endpoints = [None] * len(remote_params)
for idx, optimizer in enumerate(remote_params):
block_id = optimizer.block_id
slice = optimizer.slice
endpoint = optimizer.endpoint
index = block_id if is_slice else idx
slices[index] = slice
slice_varnames[index] = "{}.slice.{}".format(slice.name, idx)
remote_varnames[index] = slice.name
endpoints[index] = endpoint
slice_shapes = []
for slice in slices:
tmp = [str(dim) for dim in slice.shape]
slice_shapes.append(",".join(tmp))
block.append_op(
type='recv_save',
attrs={
"trainer_id": 0,
"shape": origin.shape,
"slice_shapes": slice_shapes,
"slice_varnames": slice_varnames,
"remote_varnames": remote_varnames,
"endpoints": endpoints,
"file_path": os.path.join(dirname, origin.name)
})
executor.run(prog)
def __save_distributed_lookup_tables(executor, dirname,
distributed_lookup_table, endpoints):
"""
because the distributed lookup table may too huge to merge and save at one place,
it will be saved at parameter server independent respectively.
the save directory is dirname/"__lookup_table__".
"""
prog = Program()
block = prog.global_block()
# if there is lookup table, the trainer 0 will notify all pserver to save.
lookup_table_filename = os.path.join(dirname, "__lookup_table__")
attrs = {}
attrs['epmap'] = endpoints
attrs['dir'] = lookup_table_filename
attrs['lookup_table'] = distributed_lookup_table
block.append_op(
type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
executor.run(prog)
def __exclude_vars(exclude_var_names=[]):
def is_valid(var):
if var.name in exclude_var_names:
return False
if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
var.desc.type() == core.VarDesc.VarType.READER:
return False
return var.persistable
return is_valid
if not isinstance(main_program, Program):
raise TypeError("'main_program' should be an instance of Program.")
if not main_program._is_distributed:
raise ValueError(
"'_save_distributed_persistables' just be designed for distributed training."
)
remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
["Optimizer", "RemotePrefetch"], groupby=True)
exclude_var_names = []
if remote_params_map:
exclude_var_names.extend(remote_params_map.keys())
if main_program._distributed_lookup_table:
if isinstance(main_program._distributed_lookup_table, list):
exclude_var_names.extend(main_program._distributed_lookup_table)
else:
exclude_var_names.append(main_program._distributed_lookup_table)
local_vars = list(
filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
save_vars(
executor, main_program=main_program, dirname=dirname, vars=local_vars)
if main_program._is_chief:
if remote_params_map:
__save_remote_params(executor, dirname, remote_params_map)
if main_program._distributed_lookup_table:
__save_distributed_lookup_tables(
executor, dirname, main_program._distributed_lookup_table,
main_program._endpoints)
def save_persistables(executor, dirname, main_program=None, filename=None):
"""
This operator saves all persistable variables from :code:`main_program` to
the folder :code:`dirname` or file :code:`filename`. You can refer to
:ref:`api_guide_model_save_reader_en` for more details. And then
saves these persistables variables to the folder :code:`dirname` or file
:code:`filename`.
The :code:`dirname` is used to specify the folder where persistable variables
are going to be saved. If you would like to save variables in separate
files, set :code:`filename` None; if you would like to save all variables in a
single file, use :code:`filename` to specify the file name.
Args:
executor(Executor): The executor to run for saving persistable variables.
You can refer to :ref:`api_guide_executor_en` for
more details.
dirname(str): The saving directory path.
main_program(Program, optional): The program whose persistbale variables will
be saved. You can refer to
:ref:`api_guide_Program_en` for more details.
If it is None, the default main program will
be used.
Default: None.
filename(str, optional): The file to save all variables. If you prefer to
save variables in different files, set it to None.
Default: None.
Returns:
None
Examples:
.. code-block:: python
import paddle.fluid as fluid
dir_path = "./my_paddle_model"
file_name = "persistables"
image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
label = fluid.data(name='label', shape=[None, 1], dtype='int64')
feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
predict = fluid.layers.fc(input=image, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=predict, label=label)
avg_loss = fluid.layers.mean(loss)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
fluid.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name)
# The persistables variables weights and bias in the fc layer of the network
# are going to be saved in the same file named "persistables" in the path
# "./my_paddle_model"
"""
if main_program and main_program._is_distributed:
_save_distributed_persistables(
executor, dirname=dirname, main_program=main_program)
else:
save_vars(
executor,
dirname=dirname,
main_program=main_program,
vars=None,
predicate=is_persistable,
filename=filename)
def load_vars(executor,
dirname,
main_program=None,
vars=None,
predicate=None,
filename=None):
"""
This API loads variables from files by executor.
There are two ways to specify the variables to be loaded: the first way, set
variables in a list and assign it to the `vars`; the second way, use the
`predicate` function to select variables that make `predicate(variable) == True`.
The first way has a higher priority.
The `dirname` is used to specify the folder where to load variables.
If variables were saved in separate files in the folder `dirname`,
set `filename` None. If all variables were saved in a single file,
use `filename` to specify it.
Args:
executor(Executor): The executor to run for loading variables.
dirname(str): The folder where to load the variables.
main_program(Program, optional): The program whose variables will be loaded.
If it is None, the default main program will
be used automatically.
Default: None
vars(list[Variable], optional): The list that contains all variables to be loaded.
Default: None
predicate(function, optional): The function selects variables that make
`predicate(variable) == True`.
Default: None
filename(str, optional): The file which saved all required variables. If variables
were saved in separate files, set it to be None.
Default: None
Returns:
None
Raises:
TypeError: If `main_program` is not an instance of Program nor None.
Examples:
.. code-block:: python
import paddle.fluid as fluid
main_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(main_prog, startup_prog):
data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
hidden_w = fluid.layers.matmul(x=data, y=w)
hidden_b = fluid.layers.elementwise_add(hidden_w, b)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
# The first usage: using `vars` to specify the variables.
path = "./my_paddle_vars"
var_list = [w, b]
fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
filename="vars_file")
fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
filename="vars_file")
# w and b will be loaded, and they are supposed to
# be saved in the same file named 'var_file' in the path "./my_paddle_vars".
# The second usage: using the `predicate` function to select variables
param_path = "./my_paddle_model"
def name_has_fc(var):
res = "fc" in var.name
return res
fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
vars=None, predicate=name_has_fc)
fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
vars=None, predicate=name_has_fc)
# Load All variables in the `main_program` whose name includes "fc".
# And all the variables are supposed to be saved in separate files.
"""
load_dirname = os.path.normpath(dirname)
if vars is None:
if main_program is None:
main_program = default_main_program()
if not isinstance(main_program, Program):
raise TypeError("program's type should be Program")
load_vars(
executor,
dirname=load_dirname,
main_program=main_program,
vars=list(filter(predicate, main_program.list_vars())),
filename=filename)
else:
load_prog = Program()
load_block = load_prog.global_block()
if main_program is None:
main_program = default_main_program()
if not isinstance(main_program, Program):
raise TypeError("program should be as Program type or None")
# save origin param shape
orig_para_shape = {}
load_var_map = {}
for each_var in vars:
assert isinstance(each_var, Variable)
if each_var.type == core.VarDesc.VarType.RAW:
continue
if isinstance(each_var, Parameter):
orig_para_shape[each_var.name] = tuple(each_var.desc.get_shape(
))
new_var = _clone_var_in_block_(load_block, each_var)
if filename is None:
load_block.append_op(
type='load',
inputs={},
outputs={'Out': [new_var]},
attrs={
'file_path': os.path.join(load_dirname, new_var.name)
})
else:
load_var_map[new_var.name] = new_var
if filename is not None:
load_var_list = []
for name in sorted(load_var_map.keys()):
load_var_list.append(load_var_map[name])
load_block.append_op(
type='load_combine',
inputs={},
outputs={"Out": load_var_list},
attrs={'file_path': os.path.join(load_dirname, filename)})
executor.run(load_prog)
# check var shape
for each_var in vars:
if not isinstance(each_var, Parameter):
continue
var_temp = paddle.fluid.global_scope().find_var(each_var.name)
assert var_temp != None, "can't not find var: " + each_var.name
new_shape = (np.array(var_temp.get_tensor())).shape
assert each_var.name in orig_para_shape, each_var.name + "MUST in var list"
orig_shape = orig_para_shape.get(each_var.name)
if new_shape != orig_shape:
raise RuntimeError(
"Shape not matching: the Program requires a parameter with a shape of ({}), "
"while the loaded parameter (namely [ {} ]) has a shape of ({}).".
format(orig_shape, each_var.name, new_shape))
def load_params(executor, dirname, main_program=None, filename=None):
"""
This API filters out all parameters from the give ``main_program``
and then tries to load these parameters from the directory ``dirname`` or
the file ``filename``.
Use the ``dirname`` to specify the directory where parameters were saved. If
parameters were saved in separate files under the directory `dirname`, set
``filename`` as None; if all parameters were saved in a single file, use
``filename`` to specify the file name.
**Note**:
Some variables are not Parameter while they are necessary for
training, such as learning rate, global step, etc. So you cannot save and
continue your training just by using :ref:`api_fluid_io_save_params` and
:ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
and :ref:`api_fluid_io_load_persistables` instead.
If you want to load the pre-trained model structure and parameters
for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can
refer to :ref:`api_guide_model_save_reader_en` for more details.
Args:
executor(Executor): The executor used for loading parameters.
See :ref:`api_guide_executor_en` for more details about it.
dirname(str): The directory path.
main_program(Program, optional): The program whose parameters will be
loaded. If it is None, the ``default_main_program``
will be used automatically. See :ref:`api_guide_Program_en`
for more about ``Program``.
Default: None.
filename(str, optional): The file which saved all parameters. If parameters
were saved in separated files, set it to None.
Default: None.
Returns:
None
Examples:
.. code-block:: python
import paddle.fluid as fluid
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
prog = fluid.default_main_program()
fluid.io.load_params(executor=exe, dirname=param_path,
main_program=None)
"""
load_vars(
executor,
dirname=dirname,
main_program=main_program,
predicate=is_parameter,
filename=filename)
def load_persistables(executor, dirname, main_program=None, filename=None):
"""
This API filters out all variables with ``persistable==True`` from the
given ``main_program`` and then tries to load these variables from the
directory ``dirnameme`` or the file ``filename``.
Use the ``dirname`` to specify the directory where persistable variables
(refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables
were saved in separate files, set ``filename`` as None; if all variables
were saved in a single file, use ``filename`` to specify the file name.
Args:
executor(Executor): The executor used for loading persistable variables.
See :ref:`api_guide_executor_en` for more details about it.
dirname(str): The directory path.
main_program(Program, optional): The program whose persistbale variables will
be loaded. If it is None, the ``default_main_program``
will be used automatically. See :ref:`api_guide_Program_en`
for more about ``Program``.
Default: None.
filename(str, optional): The file which saved all persistable variables. If variables
were saved in separated files, set it to None.
Default: None.
Returns:
None
Examples:
.. code-block:: python
import paddle.fluid as fluid
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
prog = fluid.default_main_program()
fluid.io.load_persistables(executor=exe, dirname=param_path,
main_program=None)
"""
if main_program and main_program._is_distributed:
_load_distributed_persistables(
executor, dirname=dirname, main_program=main_program)
else:
load_vars(
executor,
dirname=dirname,
main_program=main_program,
predicate=is_persistable,
filename=filename)
def _load_distributed_persistables(executor, dirname, main_program=None):
"""
customized load_persistables for distributed training.
it should be used on parameter server,
Args:
executor(Executor): The executor to run for saving parameters.
dirname(str): The load directory path.
main_program(Program): The program whose parameters will be
loaded. the main_program must be the pserver_program
get after transpiler.
Returns:
None
Examples:
.. code-block:: python
import paddle.fluid as fluid
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
t = distribute_transpiler.DistributeTranspiler()
t.transpile(...)
pserver_prog = t.get_pserver_program(...)
_load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
"""
def __is_distributed_part_var(varname):
trainer_idx = varname.find(".trainer_")
block_idx = varname.find(".block")
return trainer_idx or block_idx
def __load_persistable_vars(executor, dirname, need_load_vars):
load_prog = Program()
load_block = load_prog.global_block()
need_delete_vars = []
for param in need_load_vars:
origin_var = param.origin
slice_var = param.slice
is_slice = param.is_slice
offset = param.offset
if is_slice:
slice = load_block.create_var(
name=slice_var.name,
type=slice_var.type,
shape=slice_var.shape,
dtype=slice_var.dtype,
persistable=True)
load_block.append_op(
type='load',
inputs={},
outputs={'Out': [slice]},
attrs={
'file_path': os.path.join(dirname, origin_var.name),
'seek': offset,
'shape': slice.shape
})
else:
origin = load_block.create_var(
name="{}".format(origin_var.name),
type=origin_var.type,
shape=origin_var.shape,
dtype=origin_var.dtype,
persistable=True)
load_block.append_op(
type='load',
inputs={},
outputs={'Out': [origin]},
attrs={
'file_path': os.path.join(dirname, origin_var.name)
})
load_block.append_op(
type='delete_var',
inputs={'X': need_delete_vars}, )
executor.run(load_prog)
if not isinstance(main_program, Program):
raise TypeError("'main_program' should be an instance of Program.")
if not main_program._is_distributed:
raise ValueError(
"'_load_distributed_persistables' just be designed for distributed training."
)
if not main_program._ps_endpoint:
raise ValueError(
"'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
)
need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
main_program._ps_endpoint)
__load_persistable_vars(executor, dirname, need_load_vars)
def prepend_feed_ops(inference_program,
feed_target_names,
feed_holder_name='feed'):
if len(feed_target_names) == 0:
return
global_block = inference_program.global_block()
feed_var = global_block.create_var(
name=feed_holder_name,
type=core.VarDesc.VarType.FEED_MINIBATCH,
persistable=True)
for i, name in enumerate(feed_target_names):
out = global_block.var(name)
global_block._prepend_op(
type='feed',
inputs={'X': [feed_var]},
outputs={'Out': [out]},
attrs={'col': i})
def append_fetch_ops(inference_program,
fetch_target_names,
fetch_holder_name='fetch'):
global_block = inference_program.global_block()
fetch_var = global_block.create_var(
name=fetch_holder_name,
type=core.VarDesc.VarType.FETCH_LIST,
persistable=True)
for i, name in enumerate(fetch_target_names):
global_block.append_op(
type='fetch',
inputs={'X': [name]},
outputs={'Out': [fetch_var]},
attrs={'col': i})
def save_inference_model(dirname,
feeded_var_names,
target_vars,
executor,
main_program=None,
model_filename=None,
params_filename=None,
export_for_deployment=True,
program_only=False):
"""
Prune the given `main_program` to build a new program especially for inference,
and then save it and all related parameters to given `dirname` .
If you just want to save parameters of your trained model, please use the
:ref:`api_fluid_io_save_params` . You can refer to :ref:`api_guide_model_save_reader_en`
for more details.
Note:
The :code:`dirname` is used to specify the folder where inference model
structure and parameters are going to be saved. If you would like to save params of
Program in separate files, set `params_filename` None; if you would like to save all
params of Program in a single file, use `params_filename` to specify the file name.
Args:
dirname(str): The directory path to save the inference model.
feeded_var_names(list[str]): list of string. Names of variables that need to be feeded
data during inference.
target_vars(list[Variable]): list of Variable. Variables from which we can get
inference results.
executor(Executor): The executor that saves the inference model. You can refer
to :ref:`api_guide_executor_en` for more details.
main_program(Program, optional): The original program, which will be pruned to
build the inference model. If is setted None,
the global default :code:`_main_program_` will be used.
Default: None.
model_filename(str, optional): The name of file to save the inference program
itself. If is setted None, a default filename
:code:`__model__` will be used.
params_filename(str, optional): The name of file to save all related parameters.
If it is setted None, parameters will be saved
in separate files .
export_for_deployment(bool): If True, programs are modified to only support
direct inference deployment. Otherwise,
more information will be stored for flexible
optimization and re-training. Currently, only
True is supported.
Default: True.
program_only(bool, optional): If True, It will save inference program only, and do not
save params of Program.
Default: False.
Returns:
The fetch variables' name list
Return Type:
list
Raises:
ValueError: If `feed_var_names` is not a list of basestring, an exception is thrown.
ValueError: If `target_vars` is not a list of Variable, an exception is thrown.
Examples:
.. code-block:: python
import paddle.fluid as fluid
path = "./infer_model"
# User defined network, here a softmax regresssion example
image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
label = fluid.data(name='label', shape=[None, 1], dtype='int64')
feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
predict = fluid.layers.fc(input=image, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=predict, label=label)
avg_loss = fluid.layers.mean(loss)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
# Feed data and train process
# Save inference model. Note we don't save label and loss in this example
fluid.io.save_inference_model(dirname=path,
feeded_var_names=['img'],
target_vars=[predict],
executor=exe)
# In this example, the save_inference_mode inference will prune the default
# main program according to the network's input node (img) and output node(predict).
# The pruned inference program is going to be saved in the "./infer_model/__model__"
# and parameters are going to be saved in separate files under folder
# "./infer_model".
"""
if isinstance(feeded_var_names, six.string_types):
feeded_var_names = [feeded_var_names]
elif export_for_deployment:
if len(feeded_var_names) > 0:
# TODO(paddle-dev): polish these code blocks
if not (bool(feeded_var_names) and all(
isinstance(name, six.string_types)
for name in feeded_var_names)):
raise ValueError("'feed_var_names' should be a list of str.")
if isinstance(target_vars, Variable):
target_vars = [target_vars]
elif export_for_deployment:
if not (bool(target_vars) and
all(isinstance(var, Variable) for var in target_vars)):
raise ValueError("'target_vars' should be a list of Variable.")
main_program = _get_valid_program(main_program)
# remind user to set auc_states to zeros if the program contains auc op
all_ops = main_program.global_block().ops
for op in all_ops:
if op.type == 'auc':
warnings.warn(
"please ensure that you have set the auc states to zeros before saving inference model"
)
break
# fix the bug that the activation op's output as target will be pruned.
# will affect the inference performance.
# TODO(Superjomn) add an IR pass to remove 1-scale op.
with program_guard(main_program):
uniq_target_vars = []
for i, var in enumerate(target_vars):
if isinstance(var, Variable):
var = layers.scale(
var, 1., name="save_infer_model/scale_{}".format(i))
uniq_target_vars.append(var)
target_vars = uniq_target_vars
target_var_name_list = [var.name for var in target_vars]
# when a pserver and a trainer running on the same machine, mkdir may conflict
save_dirname = dirname
try:
save_dirname = os.path.normpath(dirname)
os.makedirs(save_dirname)
except OSError as e:
if e.errno != errno.EEXIST:
raise
if model_filename is not None:
model_basename = os.path.basename(model_filename)
else:
model_basename = "__model__"
model_basename = os.path.join(save_dirname, model_basename)
# When export_for_deployment is true, we modify the program online so that
# it can only be loaded for inference directly. If it's false, the whole
# original program and related meta are saved so that future usage can be
# more flexible.
origin_program = main_program.clone()
if export_for_deployment:
main_program = main_program.clone()
global_block = main_program.global_block()
need_to_remove_op_index = []
for i, op in enumerate(global_block.ops):
op.desc.set_is_target(False)
if op.type == "feed" or op.type == "fetch":
need_to_remove_op_index.append(i)
for index in need_to_remove_op_index[::-1]:
global_block._remove_op(index)
main_program.desc.flush()
main_program = main_program._prune_with_input(
feeded_var_names=feeded_var_names, targets=target_vars)
main_program = main_program._inference_optimize(prune_read_op=True)
fetch_var_names = [v.name for v in target_vars]
prepend_feed_ops(main_program, feeded_var_names)
append_fetch_ops(main_program, fetch_var_names)
main_program.desc._set_version()
paddle.fluid.core.save_op_compatible_info(main_program.desc)
with open(model_basename, "wb") as f:
f.write(main_program.desc.serialize_to_string())
else:
# TODO(panyx0718): Save more information so that it can also be used
# for training and more flexible post-processing.
with open(model_basename + ".main_program", "wb") as f:
f.write(main_program.desc.serialize_to_string())
if program_only:
warnings.warn(
"save_inference_model specified the param `program_only` to True, It will not save params of Program."
)
return target_var_name_list
main_program._copy_dist_param_info_from(origin_program)
if params_filename is not None:
params_filename = os.path.basename(params_filename)
save_persistables(executor, save_dirname, main_program, params_filename)
return target_var_name_list
def load_inference_model(dirname,
executor,
model_filename=None,
params_filename=None,
pserver_endpoints=None):
"""
Load the inference model from a given directory. By this API, you can get the model
structure(Inference Program) and model parameters. If you just want to load
parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
You can refer to :ref:`api_guide_model_save_reader_en` for more details.
Args:
dirname(str): The given directory path.
executor(Executor): The executor to run for loading inference model.
See :ref:`api_guide_executor_en` for more details about it.
model_filename(str, optional): The name of file to load the inference program.
If it is None, the default filename
``__model__`` will be used.
Default: ``None``.
params_filename(str, optional): The name of file to load all parameters.
It is only used for the case that all
parameters were saved in a single binary
file. If parameters were saved in separate
files, set it as ``None``.
Default: ``None``.
pserver_endpoints(list, optional): It is only needed by the distributed inference.
If using a distributed look up table during the training,
this table is also needed by the inference process. Its value is
a list of pserver endpoints.
Returns:
list: The return of this API is a list with three elements:
(program, feed_target_names, fetch_targets). The `program` is a
``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
The `feed_target_names` is a list of ``str``, which contains names of variables
that need to feed data in the inference program. The `fetch_targets` is a list of
``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
we can get inference results.
Raises:
ValueError: If `dirname` is not a existing directory.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
# Build the model
main_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(main_prog, startup_prog):
data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
b = fluid.layers.create_parameter(shape=[200], dtype='float32')
hidden_w = fluid.layers.matmul(x=data, y=w)
hidden_b = fluid.layers.elementwise_add(hidden_w, b)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
# Save the inference model
path = "./infer_model"
fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
target_vars=[hidden_b], executor=exe, main_program=main_prog)
# Demo one. Not need to set the distributed look up table, because the
# training doesn't use a distributed look up table.
[inference_program, feed_target_names, fetch_targets] = (
fluid.io.load_inference_model(dirname=path, executor=exe))
tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_img},
fetch_list=fetch_targets)
# Demo two. If the training uses a distributed look up table, the pserver
# endpoints list should be supported when loading the inference model.
# The below is just an example.
endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
[dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
fluid.io.load_inference_model(dirname=path,
executor=exe,
pserver_endpoints=endpoints))
# In this example, the inference program was saved in the file
# "./infer_model/__model__" and parameters were saved in
# separate files under the directory "./infer_model".
# By the inference program, feed_target_names and
# fetch_targets, we can use an executor to run the inference
# program for getting the inference result.
"""
load_dirname = os.path.normpath(dirname)
if not os.path.isdir(load_dirname):
raise ValueError("There is no directory named '%s'", dirname)
if model_filename is not None:
model_filename = os.path.basename(model_filename)
else:
model_filename = "__model__"
model_filename = os.path.join(load_dirname, model_filename)
if params_filename is not None:
params_filename = os.path.basename(params_filename)
with open(model_filename, "rb") as f:
program_desc_str = f.read()
program = Program.parse_from_string(program_desc_str)
if not core._is_program_version_supported(program._version()):
raise ValueError("Unsupported program version: %d\n" %
program._version())
# Binary data also need versioning.
load_persistables(executor, load_dirname, program, params_filename)
if pserver_endpoints:
program = _endpoints_replacement(program, pserver_endpoints)
feed_target_names = program.desc.get_feed_target_names()
fetch_target_names = program.desc.get_fetch_target_names()
fetch_targets = [
program.global_block().var(name) for name in fetch_target_names
]
return [program, feed_target_names, fetch_targets]
def _endpoints_replacement(program, endpoints):
ENDPOINT_MAP = "epmap"
for op in program.global_block().ops:
if op.has_attr(ENDPOINT_MAP):
op.set_attr(ENDPOINT_MAP, endpoints)
program._sync_with_cpp()
return program
def get_parameter_value(para, executor):
"""
Get the LoDTensor value of the given parameter.
Args:
para(Parameter): The parameter to get value from.
executor(Executor): The executor to run for retrieving the value.
Returns:
numpy.array: The given parameter's values.
Raises:
AssertionError: If the `para` is not an instance of Parameter.
Examples:
.. code-block:: python
import paddle.fluid as fluid
exe = fluid.Executor(fluid.CPUPlace())
param = fluid.default_main_program().global_block().var('fc.w')
p = fluid.io.get_parameter_value(param, exe)
"""
assert is_parameter(para)
get_program = Program()
block = get_program.global_block()
new_var = _clone_var_in_block_(block, para)
return executor.run(get_program, feed={}, fetch_list=[new_var])[0]
def get_parameter_value_by_name(name, executor, program=None):
"""
Get the LoDTensor value of a certain parameter by its name.
Args:
name(str): The parameter's name.
executor(Executor): The executor to run for retrieving the value.
program(Program | None): The program where to find the parameter.
If it's set to be None, the function will
try to find the parameter in the default
main program.
Returns:
numpy.array: The parameter's values.
Raises:
TypeError: If given `name` is not an instance of basestring.
TypeError: If the parameter with the given name doesn't exist.
AssertionError: If there is a varibale named `name` in the
given program but it is not a Parameter.
Examples:
.. code-block:: python
import paddle.fluid as fluid
exe = fluid.Executor(fluid.CPUPlace())
p = fluid.io.get_parameter_value('fc.w', exe)
"""
if program is None:
program = default_main_program()
var = program.global_block().var(name)
return get_parameter_value(var, executor)
def _save_persistable_nodes(executor, dirname, graph):
"""
Save persistable nodes to the given directory by the executor.
Args:
executor(Executor): The executor to run for saving node values.
dirname(str): The directory path.
graph(IrGraph): All the required persistable nodes in the graph will be saved.
"""
persistable_node_names = set()
persistable_nodes = []
all_persistable_nodes = graph.all_persistable_nodes()
for node in all_persistable_nodes:
name = cpt.to_text(node.name())
if name not in persistable_node_names:
persistable_node_names.add(name)
persistable_nodes.append(node)
program = Program()
var_list = []
for node in persistable_nodes:
var_desc = node.var()
if var_desc.type() == core.VarDesc.VarType.RAW or \
var_desc.type() == core.VarDesc.VarType.READER:
continue
var = program.global_block().create_var(
name=var_desc.name(),
shape=var_desc.shape(),
dtype=var_desc.dtype(),
type=var_desc.type(),
lod_level=var_desc.lod_level(),
persistable=var_desc.persistable())
var_list.append(var)
save_vars(executor=executor, dirname=dirname, vars=var_list)
def _load_persistable_nodes(executor, dirname, graph):
"""
Load persistable node values from the given directory by the executor.
Args:
executor(Executor): The executor to run for loading node values.
dirname(str): The directory path.
graph(IrGraph): All the required persistable nodes in the graph will be loaded.
"""
persistable_node_names = set()
persistable_nodes = []
all_persistable_nodes = graph.all_persistable_nodes()
for node in all_persistable_nodes:
name = cpt.to_text(node.name())
if name not in persistable_node_names:
persistable_node_names.add(name)
persistable_nodes.append(node)
program = Program()
var_list = []
def _exist(var):
return os.path.exists(os.path.join(dirname, var.name))
for node in persistable_nodes:
var_desc = node.var()
if var_desc.type() == core.VarDesc.VarType.RAW or \
var_desc.type() == core.VarDesc.VarType.READER:
continue
var = program.global_block().create_var(
name=var_desc.name(),
shape=var_desc.shape(),
dtype=var_desc.dtype(),
type=var_desc.type(),
lod_level=var_desc.lod_level(),
persistable=var_desc.persistable())
if _exist(var):
var_list.append(var)
else:
_logger.warn("Cannot find the var %s!!!" % (node.name()))
load_vars(executor=executor, dirname=dirname, vars=var_list)
def save(program, model_path):
"""
This function save parameters, optimizer information and network description to model_path.
The parameters contains all the trainable Variable, will save to a file with suffix ".pdparams".
The optimizer information contains all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no variable need to save (like SGD), the fill will not generated).
The network description is the description of the program. It's only used for deployment. The description will save to a file with a suffix ".pdmodel".
Args:
program(Program) : The program to saved.
model_path(str): the file prefix to save the program. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised
Returns:
None
Examples:
.. code-block:: python
import paddle.fluid as fluid
prog = fluid.default_main_program()
fluid.save( prog, "./temp")
"""
base_name = os.path.basename(model_path)
assert base_name != "", \
"model_path MUST be format of dirname/filename [dirname\\filename in Window], Now filename is empty str"
dir_name = os.path.dirname(model_path)
if dir_name and not os.path.exists(dir_name):
os.makedirs(dir_name)
def get_tensor(var):
t = global_scope().find_var(var.name).get_tensor()
return np.array(t)
parameter_list = list(filter(is_parameter, program.list_vars()))
param_dict = {p.name: get_tensor(p) for p in parameter_list}
with open(model_path + ".pdparams", 'wb') as f:
pickle.dump(param_dict, f, protocol=2)
optimizer_var_list = list(
filter(is_belong_to_optimizer, program.list_vars()))
opt_dict = {p.name: get_tensor(p) for p in optimizer_var_list}
with open(model_path + ".pdopt", 'wb') as f:
pickle.dump(opt_dict, f, protocol=2)
main_program = program.clone()
program.desc.flush()
main_program.desc._set_version()
paddle.fluid.core.save_op_compatible_info(program.desc)
with open(model_path + ".pdmodel", "wb") as f:
f.write(program.desc.serialize_to_string())
def load(program, model_path, executor=None, var_list=None):
"""
This function get parameters and optimizer information from program, and then get corresponding value from file.
An exception will throw if shape or dtype of the parameters is not match.
This function can also load model file saved with [ save_params, save_persistables, save_vars ].
var_list can not be None when load single model file
( filename is not None When save_params, save_persistables or save_vars is called ).
Args:
program(Program): The program will be loaded
model_path(str): The file prefix store the program
executor(Executor, optional): The executor used for initialize the parameter
When startup program is not run.
var_list(list, optional): The variable list to load single model file saved with
[ save_params, save_persistables, save_vars ].
Default: None
Returns:
None
Examples:
.. code-block:: python
import paddle.fluid as fluid
prog = fluid.default_main_program()
fluid.save( prog, "./temp")
fluid.load( prog, "./temp")
"""
assert executor is None or isinstance(executor, Executor)
model_prefix = model_path
if model_prefix.endswith(".pdparams"):
model_prefix = model_prefix[:-9]
elif model_prefix.endswith(".pdopt"):
model_prefix = model_prefix[:-6]
elif model_prefix.endswith(".pdmodel"):
model_prefix = model_prefix[:-8]
parameter_file_name = model_prefix + ".pdparams"
if not os.path.exists(parameter_file_name):
# model file save by fluid.save not found, try to load model file saved with
# [save_vars, save_params, save_persistables]
_logger.warning(
"{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
format(parameter_file_name))
if executor is None:
raise ValueError(
"executor is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
)
if os.path.isdir(model_path):
binary_file_set = set()
for root, dirs, files in os.walk(model_path, topdown=False):
for f in files:
binary_file_set.add(
os.path.join(root, f).replace("\\", "/"))
program_var_list = list(program.list_vars())
loaded_var_list = []
for var in program_var_list:
var_path = os.path.join(model_path, var.name).replace("\\", "/")
if var_path in binary_file_set:
loaded_var_list.append(var)
binary_file_set.remove(var_path)
if len(binary_file_set) > 0:
unused_var_list = " ".join(list(binary_file_set))
_logger.warning("variable file [ %s ] not used" %
(" ".join(list(binary_file_set))))
try:
load_vars(
executor=executor, dirname=model_path, vars=loaded_var_list)
except RuntimeError as e:
_logger.error(e)
raise e
except:
raise RuntimeError(
"Failed to load model file , please make sure model file is saved with the "
"following APIs: save_params, save_persistables, save_vars")
return
elif os.path.isfile(model_path):
if var_list == None:
raise ValueError(
"var_list is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
)
program_var_list = program.list_vars()
program_var_name_set = set([var.name for var in program_var_list])
# check all the variable inlcuded in program
for var in var_list:
if var.name not in program_var_name_set:
raise LookupError(
"loaded var [{}] not included in program variable list")
dir_name, file_name = os.path.split(model_path)
try:
load_vars(
executor=executor,
dirname=dir_name,
vars=var_list,
filename=file_name)
except RuntimeError as e:
_logger.error(e)
raise e
except:
raise RuntimeError( "Failed to load model file , please make sure model file is saved with the " \
"the following APIs: [ save_params, save_persistables, save_vars ]. " \
"When these API called, filename CANNOT be None")
return
def set_var(var, ndarray):
t = global_scope().find_var(var.name).get_tensor()
p = t._place()
if p.is_cpu_place():
place = paddle.fluid.CPUPlace()
elif p.is_cuda_pinned_place():
place = paddle.fluid.CUDAPinnedPlace()
else:
p = paddle.fluid.core.Place()
p.set_place(t._place())
place = paddle.fluid.CUDAPlace(p.gpu_device_id())
t.set(ndarray, place)
parameter_list = list(filter(is_parameter, program.list_vars()))
if executor:
paddle.fluid.core._create_loaded_parameter(parameter_list,
global_scope(),
executor._default_executor)
with open(parameter_file_name, 'rb') as f:
load_dict = pickle.load(f) if six.PY2 else pickle.load(
f, encoding='latin1')
for v in parameter_list:
assert v.name in load_dict, \
"Can not find [{}] in model file [{}]".format(
v.name, parameter_file_name)
set_var(v, load_dict[v.name])
optimizer_var_list = list(
filter(is_belong_to_optimizer, program.list_vars()))
if len(optimizer_var_list) > 0:
opt_file_name = model_prefix + ".pdopt"
assert os.path.exists(opt_file_name), \
"Optimizer file [{}] not exits".format(opt_file_name)
if executor:
paddle.fluid.core._create_loaded_parameter(
optimizer_var_list, global_scope(), executor._default_executor)
with open(opt_file_name, 'rb') as f:
load_dict = pickle.load(f) if six.PY2 else pickle.load(
f, encoding='latin1')
for v in optimizer_var_list:
assert v.name in load_dict, \
"Can not find [{}] in model file [{}]".format(
v.name, opt_file_name)
set_var(v, load_dict[v.name])
def load_program_state(model_path, var_list=None):
"""
Load program state from local file
Args:
model_path(str): The file prefix store the program
var_list(list, optional): The variable list to load saved with
[ save_params, save_persistables, save_vars ].
Default: None.
The var_list is only used to get name,
will not be modified.
Returns:
state_dict(dict): the dict store Parameter and optimizer information
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data( name="x", shape=[10, 10], dtype='float32')
y = fluid.layers.fc( x, 10)
z = fluid.layers.fc( y, 10)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run( fluid.default_startup_program() )
prog = fluid.default_main_program()
fluid.save( prog, "./temp")
program_state = fluid.load_program_state( "./temp")
"""
model_prefix = model_path
if model_prefix.endswith(".pdparams"):
model_prefix = model_prefix[:-9]
elif model_prefix.endswith(".pdopt"):
model_prefix = model_prefix[:-6]
elif model_prefix.endswith(".pdmodel"):
model_prefix = model_prefix[:-8]
parameter_file_name = model_prefix + ".pdparams"
if not os.path.exists(parameter_file_name):
# model file saved with fluid.save is not found, try to load model file saved with
# [save_vars, save_params, save_persistables]
_logger.warning(
"{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
format(parameter_file_name))
var_name_list = []
if var_list is None and os.path.isfile(model_path):
raise ValueError(
"var_list can not be None when model_path is a file type")
for root, dirs, files in os.walk(model_path, topdown=False):
for f in files:
file_path = os.path.join(root, f)
var_temp_name = os.path.relpath(file_path, model_path)
var_temp_name = var_temp_name.replace("\\", "/")
var_name_list.append(var_temp_name)
with _load_program_scope():
load_prog = Program()
load_block = load_prog.global_block()
def clone_var_to_block(block, var):
if not isinstance(var, Variable):
raise TypeError("value in var_list must be variable")
return block.create_var(
name=var.name,
shape=var.shape,
dtype=var.dtype,
type=var.type,
lod_level=var.lod_level
if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR else
None,
persistable=True)
loaded_var_list = []
if var_list is not None:
for var in var_list:
loaded_var_list.append(clone_var_to_block(load_block, var))
else:
for var_name in var_name_list:
loaded_var_list.append(
load_block.create_var(
name=var_name, persistable=True))
place = paddle.fluid.CPUPlace()
exe = paddle.fluid.Executor(place)
try:
if os.path.isfile(model_path):
dir_name, file_name = os.path.split(model_path)
else:
dir_name = model_path
file_name = None
load_vars(
executor=exe,
dirname=dir_name,
vars=loaded_var_list,
filename=file_name)
except:
raise RuntimeError(
"Failed to load model file , please make sure model file is saved with the "
"following APIs: save_params, save_persistables, save_vars")
res_dict = {}
for var in loaded_var_list:
res_dict[var.name] = np.asarray(paddle.fluid.global_scope(
).find_var(var.name).get_tensor())
return res_dict
assert os.path.exists(parameter_file_name), \
"Parameter file [{}] not exits".format(parameter_file_name)
with open(parameter_file_name, 'rb') as f:
para_dict = pickle.load(f) if six.PY2 else pickle.load(
f, encoding='latin1')
opt_file_name = model_prefix + ".pdopt"
if os.path.exists(opt_file_name):
with open(opt_file_name, 'rb') as f:
opti_dict = pickle.load(f) if six.PY2 else pickle.load(
f, encoding='latin1')
para_dict.update(opti_dict)
return para_dict
def set_program_state(program, state_dict):
"""
Set program parameter from state_dict
An exception will throw if shape or dtype of the parameters is not match.
NOTICE: This function MUST called after run start_up_program
Args:
program(Program): The program to be set
state_dict(dict): the dict store Parameter and optimizer information
Returns:
None
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data( name="x", shape=[10, 10], dtype='float32')
y = fluid.layers.fc( x, 10)
z = fluid.layers.fc( y, 10)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run( fluid.default_startup_program() )
prog = fluid.default_main_program()
fluid.save( prog, "./temp")
program_state = fluid.load_program_state( "./temp")
fluid.set_program_state( prog, program_state)
"""
parameter_list = list(filter(is_persistable, program.list_vars()))
used_para_list = {}
for para in parameter_list:
var_temp = paddle.fluid.global_scope().find_var(para.name)
assert var_temp != None, \
"Variable [ {} ] Not found, Please make sure run startup program".format(para.name)
if para.name in state_dict:
# set value from state dict
orig_para_np = np.array(var_temp.get_tensor())
new_para_np = state_dict[para.name]
assert orig_para_np.shape == new_para_np.shape, \
"Shape not matching: the Program requires a parameter with a shape of ({}), " \
"while the loaded parameter (namely [ {} ]) has a shape of ({})." \
.format(orig_para_np.shape, para.name, new_para_np.shape)
assert orig_para_np.dtype == new_para_np.dtype, \
"Dtype not matching: the Program requires a parameter with a dtype of ({}), " \
"while the loaded parameter (namely [ {} ]) has a dtype of ({})." \
.format(orig_para_np.dtype, para.name, new_para_np.dtype)
ten = var_temp.get_tensor()
ten_place = ten._place()
assert ten_place.is_gpu_place() or ten_place.is_cpu_place(), \
"Place not support, only support CPUPlace and GPUPlace, now is {}".format(str(ten_place))
py_place = paddle.fluid.CPUPlace()
if ten_place.is_cuda_pinned_place():
place = paddle.fluid.CUDAPinnedPlace()
elif ten_place.is_gpu_place():
p = paddle.fluid.core.Place()
p.set_place(ten_place)
py_place = paddle.fluid.CUDAPlace(p.gpu_device_id())
ten.set(new_para_np, py_place)
used_para_list[para.name] = 1
unused_para_list = []
for k, v in state_dict.items():
if k not in used_para_list:
unused_para_list.append(k)
if len(unused_para_list) > 0:
warnings.warn(
"This list is not set, Because of Paramerter not found in program. There are: {}".
format(" ".join(unused_para_list)))