You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
372 lines
12 KiB
372 lines
12 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
// clang-format off
|
|
#include "paddle/fluid/framework/python_headers.h"
|
|
// clang-format on
|
|
|
|
#include <map> // NOLINT
|
|
#include <string> // NOLINT
|
|
#include <vector> // NOLINT
|
|
#include <memory> // NOLINT
|
|
|
|
#include "paddle/fluid/framework/op_desc.h"
|
|
#include "paddle/fluid/framework/operator.h"
|
|
#include "paddle/fluid/framework/var_desc.h"
|
|
#include "paddle/fluid/platform/enforce.h"
|
|
#include "paddle/fluid/platform/device_context.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
|
|
#include "paddle/fluid/imperative/type_defs.h"
|
|
|
|
namespace paddle {
|
|
namespace imperative {
|
|
|
|
class VarBase;
|
|
|
|
namespace py = ::pybind11;
|
|
|
|
class PreparedOp {
|
|
public:
|
|
PreparedOp(const framework::OperatorBase& op,
|
|
const framework::RuntimeContext& ctx,
|
|
framework::OperatorWithKernel::OpKernelFunc func,
|
|
platform::DeviceContext* dev_ctx,
|
|
std::vector<framework::KernelConfig>* kernel_configs)
|
|
: op(op),
|
|
ctx(ctx),
|
|
func(func),
|
|
dev_ctx(dev_ctx),
|
|
kernel_configs(kernel_configs) {}
|
|
|
|
static PreparedOp Prepare(const framework::RuntimeContext& ctx,
|
|
const framework::OperatorWithKernel& op,
|
|
const platform::Place& place) {
|
|
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
|
|
auto* dev_ctx = pool.Get(place);
|
|
|
|
// check if op[type] has kernel registered.
|
|
auto& all_op_kernels = op.AllOpKernels();
|
|
auto kernels_iter = all_op_kernels.find(op.Type());
|
|
if (kernels_iter == all_op_kernels.end()) {
|
|
PADDLE_THROW(
|
|
"There are no kernels which are registered in the %s operator.",
|
|
op.Type());
|
|
}
|
|
|
|
framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;
|
|
|
|
auto expected_kernel_key =
|
|
op.GetExpectedKernelType(framework::ExecutionContext(
|
|
op, framework::Scope(), *dev_ctx, ctx, nullptr));
|
|
VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
|
|
|
|
auto kernel_iter = kernels.find(expected_kernel_key);
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
// workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
|
|
if (kernel_iter == kernels.end() &&
|
|
expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
|
|
VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
|
|
expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
|
|
expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
|
|
kernel_iter = kernels.find(expected_kernel_key);
|
|
}
|
|
#endif
|
|
if (kernel_iter == kernels.end()) {
|
|
PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
|
|
KernelTypeToString(expected_kernel_key));
|
|
}
|
|
std::vector<framework::KernelConfig>* kernel_configs =
|
|
op.GetKernelConfig(expected_kernel_key);
|
|
return PreparedOp(op, ctx, kernel_iter->second, dev_ctx, kernel_configs);
|
|
}
|
|
|
|
inline platform::DeviceContext* GetDeviceContext() const { return dev_ctx; }
|
|
|
|
const framework::OperatorBase& op;
|
|
const framework::RuntimeContext& ctx;
|
|
framework::OperatorWithKernel::OpKernelFunc func;
|
|
platform::DeviceContext* dev_ctx;
|
|
std::vector<framework::KernelConfig>* kernel_configs;
|
|
};
|
|
|
|
class OpBase;
|
|
|
|
/* The wrapper for Variable which holds a Variable and a VarBase of its
|
|
* gradient. This object should be managed totally by Python intepreter.
|
|
*
|
|
* Nearly all interface should be implemented in C++.
|
|
*/
|
|
class VarBase {
|
|
public:
|
|
// Internal interface, create VarBase from exist variable
|
|
VarBase(const std::string& name, framework::Variable* var, VarBase* grad,
|
|
bool stop_gradient)
|
|
: VarBase(name, var->Get<framework::LoDTensor>().type(),
|
|
var->Get<framework::LoDTensor>().dims(),
|
|
var->Get<framework::LoDTensor>().place(), var, grad,
|
|
stop_gradient, false) {}
|
|
|
|
// Python interface
|
|
VarBase(const std::string& name, const framework::proto::VarType::Type dtype,
|
|
const std::vector<int64_t>& shape, const platform::Place& place,
|
|
bool stop_gradient, bool persistable)
|
|
: VarBase(name, dtype, framework::make_ddim(shape), place, stop_gradient,
|
|
persistable) {}
|
|
|
|
// Internal interface, create VarBase from with ddim
|
|
VarBase(const std::string& name, const framework::proto::VarType::Type dtype,
|
|
const framework::DDim& shape, const platform::Place& place,
|
|
bool stop_gradient, bool persistable)
|
|
: VarBase(name, dtype, shape, place, nullptr, nullptr, stop_gradient,
|
|
persistable) {}
|
|
|
|
private:
|
|
VarBase(const std::string& name, framework::proto::VarType::Type dtype,
|
|
const framework::DDim& shape, const platform::Place& place,
|
|
framework::Variable* var, VarBase* grad, bool stop_gradient,
|
|
bool persistable)
|
|
: name_(name),
|
|
dtype_(dtype),
|
|
place_(place),
|
|
var_(var),
|
|
grads_(grad),
|
|
stop_gradient_(stop_gradient),
|
|
persistable_(persistable),
|
|
pre_op_(nullptr),
|
|
pre_op_out_name_(),
|
|
pre_op_out_idx_(-1) {
|
|
if (!var_) {
|
|
var_ = new framework::Variable();
|
|
auto tensor = var_->GetMutable<framework::LoDTensor>();
|
|
tensor->Resize(shape);
|
|
tensor->mutable_data(place_, dtype_);
|
|
}
|
|
}
|
|
|
|
public:
|
|
virtual ~VarBase() {
|
|
if (var_) {
|
|
delete var_;
|
|
var_ = nullptr;
|
|
}
|
|
|
|
if (grads_) {
|
|
delete grads_;
|
|
grads_ = nullptr;
|
|
}
|
|
|
|
pre_op_ = nullptr;
|
|
pre_op_out_idx_ = -1;
|
|
}
|
|
|
|
inline void SetName(const std::string& name) { name_ = name; }
|
|
inline std::string Name() const { return name_; }
|
|
|
|
inline std::vector<int64_t> Shape() const {
|
|
if (var_->IsInitialized()) {
|
|
return framework::vectorize(var_->Get<framework::LoDTensor>().dims());
|
|
} else {
|
|
return {};
|
|
}
|
|
}
|
|
|
|
inline framework::proto::VarType::Type DType() const { return dtype_; }
|
|
|
|
inline void SetStopGradient(bool stop_gradient) {
|
|
stop_gradient_ = stop_gradient;
|
|
}
|
|
inline bool IsStopGradient() const { return stop_gradient_; }
|
|
|
|
inline void SetPersistable(bool persistable) { persistable_ = persistable; }
|
|
inline bool IsPersistable() const { return persistable_; }
|
|
|
|
inline OpBase* PreOp() const { return pre_op_; }
|
|
inline int PreOpOutIdx() const { return pre_op_out_idx_; }
|
|
|
|
void RunBackward();
|
|
|
|
inline void ResetPreOp(OpBase* op) {
|
|
if (op == pre_op_) {
|
|
// clear pre_op info when op equals to var's pre_op
|
|
pre_op_ = nullptr;
|
|
pre_op_out_idx_ = -1;
|
|
}
|
|
}
|
|
|
|
void TrackPreOp(OpBase* pre_op, const std::string& pre_op_out_name,
|
|
int pre_op_out_idx, bool pre_op_stop_gradient) {
|
|
pre_op_ = pre_op;
|
|
pre_op_out_name_ = pre_op_out_name;
|
|
pre_op_out_idx_ = pre_op_out_idx;
|
|
if (pre_op_stop_gradient) {
|
|
stop_gradient_ = pre_op_stop_gradient;
|
|
}
|
|
}
|
|
|
|
void ClearGradient() {
|
|
VLOG(1) << "clear gradient of " << Name();
|
|
if (grads_ && grads_->var_ && grads_->var_->IsInitialized()) {
|
|
auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
|
|
operators::math::set_constant(
|
|
*(platform::DeviceContextPool::Instance().Get(
|
|
grads_->var_->Get<framework::LoDTensor>().place())),
|
|
grads_t, 0.0);
|
|
}
|
|
}
|
|
|
|
framework::LoDTensor& GradValue();
|
|
|
|
std::unique_ptr<VarBase> NewVarBase(const platform::Place& dst_place,
|
|
const bool blocking) const;
|
|
|
|
inline std::string GradName() const {
|
|
return string::Sprintf("%s@IGrad", Name());
|
|
}
|
|
|
|
std::string name_;
|
|
framework::proto::VarType::Type dtype_;
|
|
platform::Place place_;
|
|
|
|
framework::Variable* var_;
|
|
VarBase* grads_;
|
|
|
|
private:
|
|
bool stop_gradient_;
|
|
bool persistable_;
|
|
|
|
OpBase* pre_op_;
|
|
std::string pre_op_out_name_;
|
|
int pre_op_out_idx_;
|
|
};
|
|
|
|
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
|
|
* gradient. This object should be managed totally by Python intepreter.
|
|
*/
|
|
class PYBIND11_HIDDEN OpBase {
|
|
public:
|
|
OpBase(const std::string& type)
|
|
: type_(type),
|
|
trace_id_(-1),
|
|
forward_id_(-1),
|
|
backward_id_(-1),
|
|
place_(platform::CPUPlace()),
|
|
backward_hooks_() {}
|
|
|
|
virtual ~OpBase() {
|
|
// TODO(minqiyang): remove op_desc from block_desc in tracer
|
|
//
|
|
// reset all output vars' pre op
|
|
for (auto iter : output_vars_) {
|
|
for (VarBase* var : iter.second) {
|
|
var->ResetPreOp(this);
|
|
}
|
|
}
|
|
|
|
// release resource
|
|
for (framework::OpDesc* desc : grad_op_descs_) {
|
|
delete desc;
|
|
}
|
|
}
|
|
|
|
std::map<std::string, std::vector<VarBase*>> ApplyGrad();
|
|
|
|
inline std::string Type() const { return type_; }
|
|
inline std::string GradOpType(size_t index) const {
|
|
PADDLE_ENFORCE_NOT_NULL(grad_op_descs_[index]);
|
|
return grad_op_descs_[index]->Type();
|
|
}
|
|
|
|
void RegisterBackwardHooks(const py::object& callable);
|
|
|
|
void InvokeBackwardHooks();
|
|
|
|
void TrackPreOp(const VarBase* inp_var, const std::string& inp_name) {
|
|
if (inp_var->PreOp() && !inp_var->IsStopGradient()) {
|
|
VLOG(3) << "add pre op " << inp_var->PreOp()->Type() << " in slot "
|
|
<< inp_name;
|
|
pre_ops_[inp_name].push_back(inp_var->PreOp());
|
|
pre_ops_out_idx_[inp_name].push_back(inp_var->PreOpOutIdx());
|
|
} else {
|
|
VLOG(3) << "no pre op in slot " << inp_name
|
|
<< " input var stop_gradient: " << inp_var->IsStopGradient();
|
|
pre_ops_[inp_name].push_back(nullptr);
|
|
// pre_ops_out_idx_[inp_name].push_back(-1);
|
|
}
|
|
}
|
|
|
|
std::string type_;
|
|
// One of `trace_id_` or `forward_id_` is set, not both.
|
|
// For pure python PyLayer, use `forward_id_`, otherwise, use trace_id_.
|
|
int trace_id_;
|
|
int forward_id_;
|
|
|
|
// When has backward, one of `grad_op_descs_` or `backward_id_` is set,
|
|
// not both.
|
|
// Note: each fwd op corresponds to a vector of bwd ops.
|
|
std::vector<framework::OpDesc*> grad_op_descs_;
|
|
int backward_id_;
|
|
|
|
platform::Place place_;
|
|
|
|
VarBasePtrMap input_vars_;
|
|
VarBasePtrMap output_vars_;
|
|
OpBasePtrMap pre_ops_;
|
|
std::map<std::string, std::vector<int>> pre_ops_out_idx_;
|
|
|
|
// Inputs to a vector of bwd ops.
|
|
std::vector<framework::VariableValueMap> grad_input_vars_;
|
|
// Outputs to a vector of bwd ops.
|
|
std::vector<framework::VariableValueMap> grad_output_vars_;
|
|
|
|
std::vector<py::object> backward_hooks_;
|
|
};
|
|
|
|
class Layer {
|
|
public:
|
|
virtual ~Layer() {}
|
|
|
|
virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
|
|
std::vector<VarBase> vars;
|
|
return vars;
|
|
}
|
|
};
|
|
|
|
class PyLayer {
|
|
public:
|
|
virtual ~PyLayer() {}
|
|
|
|
static const char* kFwdInp;
|
|
static const char* kFwdOut;
|
|
|
|
static void RegisterFunc(int func_id, const py::object& py_func);
|
|
|
|
static int NumFuncs();
|
|
|
|
static std::vector<framework::Variable*> Apply(
|
|
int func_id, const std::vector<VarBase*>& inputs);
|
|
|
|
static std::vector<framework::Variable*> ApplyGrad(
|
|
int func_id, const std::vector<framework::Variable*>& inputs);
|
|
|
|
private:
|
|
static std::vector<framework::Variable*> CallPythonFunc(
|
|
const py::object& callable, const std::vector<framework::Variable*>& ins);
|
|
};
|
|
|
|
} // namespace imperative
|
|
} // namespace paddle
|