You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/imperative/layer.h

372 lines
12 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
// clang-format off
#include "paddle/fluid/framework/python_headers.h"
// clang-format on
#include <map> // NOLINT
#include <string> // NOLINT
#include <vector> // NOLINT
#include <memory> // NOLINT
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/imperative/type_defs.h"
namespace paddle {
namespace imperative {
class VarBase;
namespace py = ::pybind11;
class PreparedOp {
public:
PreparedOp(const framework::OperatorBase& op,
const framework::RuntimeContext& ctx,
framework::OperatorWithKernel::OpKernelFunc func,
platform::DeviceContext* dev_ctx,
std::vector<framework::KernelConfig>* kernel_configs)
: op(op),
ctx(ctx),
func(func),
dev_ctx(dev_ctx),
kernel_configs(kernel_configs) {}
static PreparedOp Prepare(const framework::RuntimeContext& ctx,
const framework::OperatorWithKernel& op,
const platform::Place& place) {
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
auto* dev_ctx = pool.Get(place);
// check if op[type] has kernel registered.
auto& all_op_kernels = op.AllOpKernels();
auto kernels_iter = all_op_kernels.find(op.Type());
if (kernels_iter == all_op_kernels.end()) {
PADDLE_THROW(
"There are no kernels which are registered in the %s operator.",
op.Type());
}
framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;
auto expected_kernel_key =
op.GetExpectedKernelType(framework::ExecutionContext(
op, framework::Scope(), *dev_ctx, ctx, nullptr));
VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
// workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
if (kernel_iter == kernels.end() &&
expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
kernel_iter = kernels.find(expected_kernel_key);
}
#endif
if (kernel_iter == kernels.end()) {
PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
KernelTypeToString(expected_kernel_key));
}
std::vector<framework::KernelConfig>* kernel_configs =
op.GetKernelConfig(expected_kernel_key);
return PreparedOp(op, ctx, kernel_iter->second, dev_ctx, kernel_configs);
}
inline platform::DeviceContext* GetDeviceContext() const { return dev_ctx; }
const framework::OperatorBase& op;
const framework::RuntimeContext& ctx;
framework::OperatorWithKernel::OpKernelFunc func;
platform::DeviceContext* dev_ctx;
std::vector<framework::KernelConfig>* kernel_configs;
};
class OpBase;
/* The wrapper for Variable which holds a Variable and a VarBase of its
* gradient. This object should be managed totally by Python intepreter.
*
* Nearly all interface should be implemented in C++.
*/
class VarBase {
public:
// Internal interface, create VarBase from exist variable
VarBase(const std::string& name, framework::Variable* var, VarBase* grad,
bool stop_gradient)
: VarBase(name, var->Get<framework::LoDTensor>().type(),
var->Get<framework::LoDTensor>().dims(),
var->Get<framework::LoDTensor>().place(), var, grad,
stop_gradient, false) {}
// Python interface
VarBase(const std::string& name, const framework::proto::VarType::Type dtype,
const std::vector<int64_t>& shape, const platform::Place& place,
bool stop_gradient, bool persistable)
: VarBase(name, dtype, framework::make_ddim(shape), place, stop_gradient,
persistable) {}
// Internal interface, create VarBase from with ddim
VarBase(const std::string& name, const framework::proto::VarType::Type dtype,
const framework::DDim& shape, const platform::Place& place,
bool stop_gradient, bool persistable)
: VarBase(name, dtype, shape, place, nullptr, nullptr, stop_gradient,
persistable) {}
private:
VarBase(const std::string& name, framework::proto::VarType::Type dtype,
const framework::DDim& shape, const platform::Place& place,
framework::Variable* var, VarBase* grad, bool stop_gradient,
bool persistable)
: name_(name),
dtype_(dtype),
place_(place),
var_(var),
grads_(grad),
stop_gradient_(stop_gradient),
persistable_(persistable),
pre_op_(nullptr),
pre_op_out_name_(),
pre_op_out_idx_(-1) {
if (!var_) {
var_ = new framework::Variable();
auto tensor = var_->GetMutable<framework::LoDTensor>();
tensor->Resize(shape);
tensor->mutable_data(place_, dtype_);
}
}
public:
virtual ~VarBase() {
if (var_) {
delete var_;
var_ = nullptr;
}
if (grads_) {
delete grads_;
grads_ = nullptr;
}
pre_op_ = nullptr;
pre_op_out_idx_ = -1;
}
inline void SetName(const std::string& name) { name_ = name; }
inline std::string Name() const { return name_; }
inline std::vector<int64_t> Shape() const {
if (var_->IsInitialized()) {
return framework::vectorize(var_->Get<framework::LoDTensor>().dims());
} else {
return {};
}
}
inline framework::proto::VarType::Type DType() const { return dtype_; }
inline void SetStopGradient(bool stop_gradient) {
stop_gradient_ = stop_gradient;
}
inline bool IsStopGradient() const { return stop_gradient_; }
inline void SetPersistable(bool persistable) { persistable_ = persistable; }
inline bool IsPersistable() const { return persistable_; }
inline OpBase* PreOp() const { return pre_op_; }
inline int PreOpOutIdx() const { return pre_op_out_idx_; }
void RunBackward();
inline void ResetPreOp(OpBase* op) {
if (op == pre_op_) {
// clear pre_op info when op equals to var's pre_op
pre_op_ = nullptr;
pre_op_out_idx_ = -1;
}
}
void TrackPreOp(OpBase* pre_op, const std::string& pre_op_out_name,
int pre_op_out_idx, bool pre_op_stop_gradient) {
pre_op_ = pre_op;
pre_op_out_name_ = pre_op_out_name;
pre_op_out_idx_ = pre_op_out_idx;
if (pre_op_stop_gradient) {
stop_gradient_ = pre_op_stop_gradient;
}
}
void ClearGradient() {
VLOG(1) << "clear gradient of " << Name();
if (grads_ && grads_->var_ && grads_->var_->IsInitialized()) {
auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
operators::math::set_constant(
*(platform::DeviceContextPool::Instance().Get(
grads_->var_->Get<framework::LoDTensor>().place())),
grads_t, 0.0);
}
}
framework::LoDTensor& GradValue();
std::unique_ptr<VarBase> NewVarBase(const platform::Place& dst_place,
const bool blocking) const;
inline std::string GradName() const {
return string::Sprintf("%s@IGrad", Name());
}
std::string name_;
framework::proto::VarType::Type dtype_;
platform::Place place_;
framework::Variable* var_;
VarBase* grads_;
private:
bool stop_gradient_;
bool persistable_;
OpBase* pre_op_;
std::string pre_op_out_name_;
int pre_op_out_idx_;
};
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
* gradient. This object should be managed totally by Python intepreter.
*/
class PYBIND11_HIDDEN OpBase {
public:
OpBase(const std::string& type)
: type_(type),
trace_id_(-1),
forward_id_(-1),
backward_id_(-1),
place_(platform::CPUPlace()),
backward_hooks_() {}
virtual ~OpBase() {
// TODO(minqiyang): remove op_desc from block_desc in tracer
//
// reset all output vars' pre op
for (auto iter : output_vars_) {
for (VarBase* var : iter.second) {
var->ResetPreOp(this);
}
}
// release resource
for (framework::OpDesc* desc : grad_op_descs_) {
delete desc;
}
}
std::map<std::string, std::vector<VarBase*>> ApplyGrad();
inline std::string Type() const { return type_; }
inline std::string GradOpType(size_t index) const {
PADDLE_ENFORCE_NOT_NULL(grad_op_descs_[index]);
return grad_op_descs_[index]->Type();
}
void RegisterBackwardHooks(const py::object& callable);
void InvokeBackwardHooks();
void TrackPreOp(const VarBase* inp_var, const std::string& inp_name) {
if (inp_var->PreOp() && !inp_var->IsStopGradient()) {
VLOG(3) << "add pre op " << inp_var->PreOp()->Type() << " in slot "
<< inp_name;
pre_ops_[inp_name].push_back(inp_var->PreOp());
pre_ops_out_idx_[inp_name].push_back(inp_var->PreOpOutIdx());
} else {
VLOG(3) << "no pre op in slot " << inp_name
<< " input var stop_gradient: " << inp_var->IsStopGradient();
pre_ops_[inp_name].push_back(nullptr);
// pre_ops_out_idx_[inp_name].push_back(-1);
}
}
std::string type_;
// One of `trace_id_` or `forward_id_` is set, not both.
// For pure python PyLayer, use `forward_id_`, otherwise, use trace_id_.
int trace_id_;
int forward_id_;
// When has backward, one of `grad_op_descs_` or `backward_id_` is set,
// not both.
// Note: each fwd op corresponds to a vector of bwd ops.
std::vector<framework::OpDesc*> grad_op_descs_;
int backward_id_;
platform::Place place_;
VarBasePtrMap input_vars_;
VarBasePtrMap output_vars_;
OpBasePtrMap pre_ops_;
std::map<std::string, std::vector<int>> pre_ops_out_idx_;
// Inputs to a vector of bwd ops.
std::vector<framework::VariableValueMap> grad_input_vars_;
// Outputs to a vector of bwd ops.
std::vector<framework::VariableValueMap> grad_output_vars_;
std::vector<py::object> backward_hooks_;
};
class Layer {
public:
virtual ~Layer() {}
virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
std::vector<VarBase> vars;
return vars;
}
};
class PyLayer {
public:
virtual ~PyLayer() {}
static const char* kFwdInp;
static const char* kFwdOut;
static void RegisterFunc(int func_id, const py::object& py_func);
static int NumFuncs();
static std::vector<framework::Variable*> Apply(
int func_id, const std::vector<VarBase*>& inputs);
static std::vector<framework::Variable*> ApplyGrad(
int func_id, const std::vector<framework::Variable*>& inputs);
private:
static std::vector<framework::Variable*> CallPythonFunc(
const py::object& callable, const std::vector<framework::Variable*>& ins);
};
} // namespace imperative
} // namespace paddle